Das Zwillingsparadoxon

Das Zwillingsparadoxon

Das Zwillingsparadoxon ist ein Gedankenexperiment, das einen scheinbaren Widerspruch in der speziellen Relativitätstheorie beschreibt. Danach fliegt einer von zwei Zwillingen mit nahezu Lichtgeschwindigkeit zu einem fernen Stern und kehrt anschließend mit derselben Geschwindigkeit wieder zurück. Nach der Relativitätstheorie schließt jeder Zwilling aus seinen Beobachtungen, dass während der Flugphasen mit konstanter Geschwindigkeit der jeweils andere Zwilling als Folge der so genannten Zeitdilatation langsamer altert. Nach der Rückkehr auf der Erde stellt sich aber heraus, dass der dort zurückgebliebene Zwilling älter geworden ist als der gereiste.

Der zugrunde liegende Gedanke basierte auf einen Hinweis Albert Einsteins aus dem Jahre 1905, wonach eine Uhr, welche sich von einem beliebigen Punkt entfernt und dann wieder dorthin zurückkehrt, gegenüber einer die ganze Zeit an diesem Punkt verbliebenen Uhr nachgeht.[1] Da die Zeitdilatation jedoch symmetrisch ist, d. h. jeder sollte die Uhr des anderen langsamer gehen sehen, ergab sich die Frage, welche Uhr denn nun tatsächlich nachgeht. Dies wurde 1911 von Paul Langevin als Erstem korrekt analysiert[2], und 1913 gelang es Max von Laue, die Erklärung von Langevin mit Hilfe von Minkowski-Diagrammen sehr viel klarer und anschaulicher darzustellen.[3]

Wie Langevin und Laue zeigten, beruht das Paradoxon auf intuitiven, aber unzulässigen Annahmen über das Wesen der Zeit, wie beispielsweise der Gleichzeitigkeit. Insbesondere wird dabei der Einfluss des Richtungswechsels am Umkehrpunkt der Reise ignoriert. Durch diese Umkehr sind die beiden Zwillinge nicht gleichwertig, und nur aus der Sicht des irdischen und nicht des reisenden Zwillings liefert die Betrachtung der reinen Zeitdilatation das richtige Endergebnis.[4]

Während der Nachweis der Zeitdilatation selbst in Teilchenbeschleunigern bereits Routine ist, konnte auch eine Zeitdifferenz in der Art des Zwillingsparadoxons (also mit Hin- und Rückflug) bei einem Interkontinentalflug (1971) indirekt durch den Vergleich zweier Atomuhren in bester Übereinstimmung mit der Vorhersage der Relativitätstheorie nachgewiesen werden. Bei diesem Hafele-Keating-Experiment spielen jedoch auch die Erdrotation und Effekte der allgemeinen Relativitätstheorie eine Rolle.[5]

Inhaltsverzeichnis

Das wechselseitig langsamere Altern der Zwillinge

Zur Auflösung des Zwillingsparadoxons im Detail sind folgende zwei Fragen zu beantworten:

  • Wie kommt es, dass jeder Zwilling den jeweils anderen langsamer altern sieht?
  • Wieso erweist sich der auf der Erde zurückgebliebene Zwilling nach der Reise als der ältere?

Zur Beantwortung der ersten Frage betrachte man, wie der Zwilling auf der Erde überhaupt feststellt, dass der fliegende langsamer altert. Dazu vergleicht er die Anzeige auf einer Uhr, die der fliegende Zwilling mit sich führt, mit zwei ruhenden Uhren, die sich am Anfang und am Ende einer bestimmten Teststrecke befinden, die der fliegende Zwilling passiert. Dazu müssen diese beiden Uhren aus der Sicht des ruhenden Zwillings natürlich auf die gleiche Zeit eingestellt worden sein. Der fliegende Zwilling liest zwar bei den Passagen dieselben Uhrstände ab, wie der ruhende, er wird aber einwenden, dass seiner Ansicht nach die Uhr am Ende der Teststrecke im Vergleich zu der am Anfang vorgeht. Der gleiche Effekt tritt auf, wenn der fliegende Zwilling analog das Altern des irdischen mit zwei Uhren beurteilt.

Ursache ist der Umstand, dass es nach der Relativitätstheorie keine absolute Gleichzeitigkeit gibt. Die Gleichzeitigkeit von Ereignissen an verschiedenen Orten und damit auch die angezeigte Zeitdifferenz von zwei dortigen Uhren wird von Beobachtern, die sich mit verschiedenen Geschwindigkeiten bewegen, unterschiedlich beurteilt. Eine genaue Betrachtung der Verhältnisse zeigt, dass die wechselseitige Einschätzung einer Verlangsamung der Zeit daher nicht zu einem Widerspruch führt. Hilfreich sind dazu die vergleichsweise anschaulichen Minkowski-Diagramme, über die sich dieser Sachverhalt grafisch und ohne Formeln nachvollziehen lässt.

Die wechselseitige Verlangsamung steht in Einklang mit dem Relativitätsprinzip, das besagt, dass alle Beobachter, die sich mit konstanter Geschwindigkeit gegeneinander bewegen, völlig gleichberechtigt sind. Man spricht von Inertialsystemen, in denen sich diese Beobachter befinden.

Die Umkehrphase des reisenden Zwillings

Variante mit Beschleunigungsphasen

Zur Beantwortung der zweiten Frage ist die Abbrems- beziehungsweise Beschleunigungsphase zu betrachten, die für die Rückkehr des fliegenden Zwillings erforderlich ist. Während dieser Phase vergeht nach Einschätzung des fliegenden Zwillings die Zeit auf der Erde schneller. Der dort zurückgebliebene Zwilling altert dabei soweit nach, dass er trotz des langsameren Alterns während der Phasen mit konstanter Geschwindigkeit im Endergebnis der Ältere ist, so dass sich auch aus der Sicht des fliegenden Zwillings kein Widerspruch ergibt. Das Ergebnis nach der Rückkehr steht auch nicht im Widerspruch zum Relativitätsprinzip, da die beiden Zwillinge aufgrund der Beschleunigung, die nur der fliegende erfährt, bezüglich der Gesamtreise nicht als gleichwertig betrachtet werden können.

Ursache dieser Nachalterung ist wiederum die Relativität der Gleichzeitigkeit. Während der Beschleunigung wechselt der fliegende Zwilling gewissermaßen ständig in neue Inertialsysteme. In jedem dieser Inertialsysteme ergibt sich jedoch für den Zeitpunkt, der gleichzeitig auf der Erde herrscht, ein anderer Wert und zwar derart, dass der fliegende Zwilling auf eine Nachalterung des irdischen schließt. Je weiter sich die Zwillinge voneinander entfernt haben, umso größer ist dieser Effekt.

Weg-Zeit-Diagramm für v=0,6c. Der Zwilling auf der Erde bewegt sich auf der Zeitachse von A1 nach A4. Der reisende Zwilling nimmt den Weg über B. Linien der Gleichzeitigkeit aus der Sicht des reisenden Zwillings sind für die Hinreise rot und für die Rückreise blau eingezeichnet. Die Punkte auf den Reisewegen markieren jeweils ein Jahr Eigenzeit.

Die Verhältnisse sind im dargestellten Weg-Zeit-Diagramm einer Reise von A nach B und wieder zurück mit 60 % der Lichtgeschwindigkeit c dargestellt. Die Bahn des zurückbleibenden Zwillings verläuft entlang der Zeitachse von A1 nach A4, der fliegende nimmt den Weg über B. Jede horizontale Linie im Diagramm entspricht Ereignissen, die aus der Sicht des Zwillings auf der Erde gleichzeitig erfolgen. Der fliegende Zwilling dagegen schätzt beim Hinflug alle Ereignisse auf den roten Linien als gleichzeitig ein und beim Rückflug die auf den blauen. Unmittelbar vor seiner Ankunft am Ziel B befindet sich der ruhende Zwilling nach Ansicht des fliegenden daher bei A2 und erscheint daher weniger gealtert. Während der Umkehrphase, die hier als so kurz angenommen wurde, dass sie im Diagramm nicht zu erkennen ist, schwenken die Linien der Gleichzeitigkeit für den fliegenden Zwilling, und sein Bruder auf der Erde altert bis zum Punkt A3 nach. Während der Rückreise nach A4 scheint der Zwilling auf der Erde wieder langsamer zu altern. Da die dargestellten Neigungen der Linien der Gleichzeitigkeit nur von der Reisegeschwindigkeit vor und nach der Umkehrphase abhängen, ist die Stärke der Beschleunigung für die Nachalterungszeit nicht relevant.

Der irdische Zwilling spürt von dieser Nachalterung nichts, sondern es handelt sich, wie beschrieben, um einen Effekt, der im Rahmen der speziellen Relativitätstheorie lediglich die Folge einer Beschreibung der Vorgänge aus unterschiedlichen Koordinatensystemen heraus ist, zwischen denen der reisende Zwilling wechselt. Das wird besonders deutlich, wenn man Ereignisse betrachtet, die in Reiserichtung noch weiter von der Erde entfernt sind als der umkehrende Zwilling. Nach Einschätzung des umkehrenden Zwillings läuft dort ab einem gewissen Abstand die Zeit während der Beschleunigungsphase rückwärts. Die Situation ist vergleichbar mit Objekten in einem gewissen seitlichen Abstand vom Straßenrand, die sich schräg hinter einem Autofahrer befinden, die aber nach einer scharfen Kurve im rechten Winkel plötzlich wieder schräg vor ihm liegen können, so dass er ein zweites mal an ihnen vorbeifährt. In diesem Fall ist es die Drehung des Bezugssystems des Autos, die diesen Gegenstand scheinbar nach vorne befördert hat.

Bei all diesen Betrachtungen wurde vorausgesetzt, dass die Zwillinge bei ihrer Einschätzung des Geschehens nicht das, was sie unmittelbar sehen, für die gleichzeitig anderswo stattfindende Realität halten, sondern die ihnen bekannte Ausbreitungsgeschwindigkeit des Lichtes berücksichtigen.

So kann beispielsweise der beschriebene Nachalterungssprung nicht unmittelbar beobachtet werden, da die zugehörigen Lichtsignale, die von A2 und A3 auf der Erde ausgehen, erst während der Rückreise beim reisenden Zwilling eintreffen.

Variante ohne Beschleunigungsphasen

Durch Einführen einer dritten Person lässt sich eine Variante des Zwillingsparadoxons formulieren, die völlig ohne Beschleunigungsphasen auskommt.[6] Dabei passiert der reisende Zwilling den Stern mit gleich bleibender Geschwindigkeit, während die dritte Person gleichzeitig den Stern mit einer gleich großen aber zur Erde gerichteten Geschwindigkeit passiert, wobei beide lediglich ihre Uhren abgleichen. Wenn beide auch die Erde mit konstanter Geschwindigkeit passieren und dabei lediglich mit dem irdischen Zwilling Uhrenstände vergleichen, findet überhaupt keine Beschleunigung statt. Die mathematische Behandlung dieses Szenarios und sein Endergebnis sind identisch mit dem zuvor geschilderten, sofern die Dauer der Beschleunigungsphasen vernachlässigbar kurz ist. Diese Variante mit drei Personen demonstriert, dass nicht unbedingt die Beschleunigung als Phänomen das Zwillingsparadoxon auflöst, sondern der Umstand, dass das Geschehen während der Hin- und Rückreise aus unterschiedlichen Inertialsystemen mit unterschiedlichen Einschätzungen der Gleichzeitigkeit heraus beurteilt wird.

Andere Reisewege

Der fliegende Zwilling erweist sich nach der Rückkehr zur Erde unabhängig von den Details seiner Flugroute immer als der weniger gealterte. Das bedeutet, dass die zeitlich längste Reise von irgendeiner Stelle in Raum und Zeit zu einer anderen stets diejenige ist, die mit konstanter Geschwindigkeit, also ohne Beschleunigung erfolgt. In der Relativitätstheorie werden Raum und Zeit zur sogenannten Raumzeit vereinigt. Jeder Reisende beschreibt in ihr eine Kurve, deren Länge die Zeit repräsentiert, die für ihn dabei vergeht. Ein wesentlicher Unterschied zwischen dem dreidimensionalen Raum und der vierdimensionalen Raumzeit besteht daher darin, dass eine gerade Strecke im Raum die kürzeste Verbindung zwischen zwei Punkten darstellt, die ein Reisender zurücklegen kann, während eine gerade Strecke zwischen gegebenen Punkten in der Raumzeit die längste aller möglichen Reiserouten ist.

Zahlenbeispiel

Für eine Hin- und Rückreise mit 60 % der Lichtgeschwindigkeit zu einem Ziel in 3 Lichtjahren Abstand ergeben sich folgende Verhältnisse (siehe obige Grafik): Aus der Sicht des Zwillings auf der Erde sind für Hin- und Rückweg jeweils 5 Jahre erforderlich. Der Faktor für die Zeitdilatation und die Längenkontraktion beträgt 0,8. Das bedeutet, dass der fliegende Zwilling auf dem Hinweg nur um 5x0,8=4 Jahre altert. Dieser erklärt sich diesen geringeren Zeitbedarf damit, dass die Wegstrecke sich durch die Längenkontraktion bei seiner Reisegeschwindigkeit auf 3x0,8=2,4 Lichtjahre verkürzt hat. Da nach seiner Einschätzung auf der Erde die Zeit auch langsamer verstreicht, scheint auf der Erde unmittelbar vor seiner Ankunft am fernen Stern lediglich 4x0,8=3,2 Jahre verstrichen zu sein. Während der Umkehrphase verstreichen aber auf der Erde seiner Ansicht nach zusätzlich 3,6 Jahre. Zusammen mit den 3,2 Jahren auf dem Rückweg sind also auch aus der Sicht des fliegenden Zwillings auf der Erde insgesamt 10 Jahre verstrichen, während er selbst lediglich 8 Jahre gealtert ist.

Austausch von Lichtsignalen

Wege jährlich ausgesandter Lichtsignale. Links Signale, die der irdische Zwilling aussendet und rechts die des reisenden. Die rot dargestellten empfängt bzw. sendet der Reisende vor der Umkehr und die blauen danach. Aufgrund des relativistischen Doppler-Effektes werden die Signale zunächst mit der halben und später mit der doppelten Frequenz empfangen.

Bisher wurde dargestellt, was die Beobachter unter Berücksichtigung der ihnen bekannten Ausbreitungsgeschwindigkeit des Lichtes für das reale Geschehen halten. Im folgenden sei beschrieben, was beide Zwillinge unmittelbar sehen, wenn sie einmal pro Jahr ein Lichtsignal zu ihrem Bruder senden. Die Wege von Lichtsignalen im obigen Weg-Zeit-Diagramm sind Geraden mit einer Neigung von 45°. Bezogen auf dieses Beispiel ergeben sich die nebenstehenden Diagramme.

Zunächst bewegen sich die Zwillinge voneinander weg, so dass die Lichtstrahlen durch den Dopplereffekt rotverschoben sind. Diese Lichtstrahlen sind im Diagramm rot dargestellt. Nach der Hälfte der Reise bewegen sich die Zwillinge aufeinander zu, so dass die Lichtstrahlen blauverschoben werden, daher sind diese Lichtstrahlen im Bild blau dargestellt. Aufgrund des Relativitätsprinzips messen beide Beobachter die gleichen Zeitintervalle zwischen zwei roten Signalen. Ebenso messen beide dieselbe Zeitspanne zwischen zwei blauen Signalen, wobei diese Zeitspanne kürzer ist, als die Zeitspanne zwischen zwei roten Signalen, was im Bild sofort klar wird.

Damit führt die Annahme, beide Zwillinge wären nach der Rückkehr gleich alt, so dass beide Zwillinge gleich viele Signale vom anderen empfangen hätten, nun aber zu einem Widerspruch. Denn während der reisende Zwilling am Umkehrpunkt und damit nach der halben Reisezeit sofort die zeitlich komprimierten Signale erhält, erreichen den irdischen Zwilling die gedehnten Signale noch länger. Aufgrund des Relativitätsprinzips bekommt also der Beobachter, der für einen längeren Zeitraum blauverschobene Signale erhält insgesamt mehr Signale, als der andere. Der reisende Zwilling bekommt also mehr Signale, als der Zwilling auf der Erde, so dass beide übereinstimmend feststellen, dass der reisende Zwilling langsamer gealtert ist.

Im Zahlenbeispiel des nebenstehenden Bildes sieht der reisende Zwilling, bedingt durch eine Kombination von relativistischen Effekten und Laufzeiteffekten, den irdischen zunächst in 4 Jahren um 2 Jahre altern und in weiteren 4 Jahren um 8 Jahre, insgesamt also um 10 Jahre. Der irdische Zwilling sieht entsprechend den Reisenden zunächst in 8 Jahren um 4 Jahre altern und anschließend in 2 Jahren um 4 Jahre, insgesamt also um 8 Jahre.

Einzelbelege

  1. Einstein, Albert: Zur Elektrodynamik bewegter Körper. In: Annalen der Physik. 322, Nr. 10, 1905, S. 891-921
  2. Langevin, Paul: L’évolution de l’espace et du temps. In: Scientia. 10, 1911, S. 31-54
  3. Laue, Max von: Das Relativitätsprinzip, 2. Ausgabe, Braunschweig: Vieweg 1913
  4. Miller, Arthur I.: Albert Einstein’s special theory of relativity. Emergence (1905) and early interpretation (1905–1911), S. 257-264, Reading: Addison–Wesley 1981, ISBN 0-201-04679-2
  5. 1918 beschrieb Albert Einstein das Paradoxon auch mit Hilfe der Allgemeinen Relativitätstheorie. Siehe
    A. Einstein: Dialog über Einwände gegen die Relativitätstheorie, Die Naturwissenschaften, Heft 48, S. 697-702 (1918) (Online-PDF)
  6. Hermann Bondi, Relativity and Common Sense, Doubleday 1964 (Nachdruck Dover 2008, ISBN 0486240215), S. 80

Weblinks

Gesprochene Wikipedia Dieser Artikel ist als Audiodatei verfügbar:
Speichern | Text der gesprochenen Version
Mehr Informationen zur „Gesprochenen Wikipedia“

Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Zwillingsparadoxon — Das Zwillingsparadoxon (oder Uhrenparadoxon) ist ein Gedankenexperiment, das einen scheinbaren Widerspruch in der speziellen Relativitätstheorie beschreibt. Danach fliegt einer von zwei Zwillingen mit nahezu Lichtgeschwindigkeit zu einem fernen… …   Deutsch Wikipedia

  • Zwillingsparadoxon — Zwillingsparadoxon,   aus der speziellen Relativitätstheorie folgender, scheinbar paradoxer Sachverhalt, der die Auswirkungen der Zeitdilatation illustriert: Es trete z. B. Nina in einer Rakete eine Weltraumreise mit einer Geschwindigkeit nahe… …   Universal-Lexikon

  • Zwillings-Paradoxon — Das Zwillingsparadoxon ist ein Gedankenexperiment, das einen scheinbaren Widerspruch in der speziellen Relativitätstheorie beschreibt. Danach fliegt einer von zwei Zwillingen mit nahezu Lichtgeschwindigkeit zu einem fernen Stern und kehrt… …   Deutsch Wikipedia

  • Zwillingsparadox — Das Zwillingsparadoxon ist ein Gedankenexperiment, das einen scheinbaren Widerspruch in der speziellen Relativitätstheorie beschreibt. Danach fliegt einer von zwei Zwillingen mit nahezu Lichtgeschwindigkeit zu einem fernen Stern und kehrt… …   Deutsch Wikipedia

  • Kritik an der Relativitätstheorie — von Albert Einstein wurde vor allem in den Jahren nach ihrer Veröffentlichung auf wissenschaftlicher, pseudowissenschaftlicher, philosophischer sowie ideologischer Ebene geäußert. Gründe für die Kritik waren beispielsweise eigene… …   Deutsch Wikipedia

  • Relativitätstheorie (Geschichte) — Unter der Geschichte der speziellen Relativitätstheorie versteht man die Entwicklung von empirischen und konzeptionellen Vorschlägen und Erkenntnissen innerhalb der theoretischen Physik. Diese Entwicklung wurde insbesondere von Hendrik Antoon… …   Deutsch Wikipedia

  • Spezielle Relativitätstheorie (Geschichte) — Unter der Geschichte der speziellen Relativitätstheorie versteht man die Entwicklung von empirischen und konzeptionellen Vorschlägen und Erkenntnissen innerhalb der theoretischen Physik. Diese Entwicklung wurde insbesondere von Hendrik Antoon… …   Deutsch Wikipedia

  • Geschichte der speziellen Relativitätstheorie — Die Geschichte der speziellen Relativitätstheorie bezeichnet zunächst die Entwicklung von empirischen und konzeptionellen Vorschlägen und Erkenntnissen innerhalb der theoretischen Physik, die zu einem neuen Verständnis von Raum und Zeit führten.… …   Deutsch Wikipedia

  • Simon Jacques Prokhovnik — Simon Jacques Prokhovnik, auch Simon James Prokhovnik (* 15. Juni 1920 in Paris; † 20. Juni 1994 in Sydney), war ein australischer Mathematiker, Kosmologe und Hochschullehrer. International wurde er in Fachkreisen durch seine Veröffen …   Deutsch Wikipedia

  • Relativitätstheorie — Re|la|ti|vi|täts|the|o|rie 〈[ vi ] f. 19; unz.〉 von Einstein begründete Theorie zur möglichst allgemeinen Beschreibung der Naturgesetze, aufgrund deren sich auch Raum u. Zeit relativ, d. h. von der Wahl des Bezugssystems abhängig, erweisen * * *… …   Universal-Lexikon

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”