Haarzellen

Haarzellen

Haarzellen oder Haarsinneszellen sind ein Typ von sekundären Sinneszellen (Rezeptoren) im Nervensystem von Wirbeltieren, die mechanische Reize in Nervenaktivität umwandeln. Sie gehören damit zur Klasse der Mechanorezeptoren. Haarzellen können je nach Typ durch Schall, Wasserströmungen, Dreh- oder Linearbeschleunigung erregt werden. Am besten untersucht sind die Haarzellen des Innenohres der Säugetiere.

Inhaltsverzeichnis

Aufbau

Haarzellen bestehen aus dem Zellkörper und den namengebenden haarähnlichen Strukturen, die zur Aufnahme des Reizes dienen. Dieses Haarbündel sitzt der Zelle am oberen Ende auf und besteht aus einer Zilie und mehreren Stereozilien, wobei die Zilien der Haarzellen der Cochlea im Gegensatz zu denen des Vestibularapparats nach der Geburt wieder zurückgebildet wird. Die einzelnen Stereozilien sind an den Spitzen miteinander verbunden, diese Verbindungen nennt man „Tip-Links“. Am unteren, dem Haarbündel entgegengesetzten Ende der Zelle befindet sich eine Region, in der die Erregung der Haarzelle zu einer Ausschüttung von Botenstoffen, den Neurotransmittern führt. Hier bilden Haarzellen Synapsen mit Interneuronen, die die Information in Form von Aktionspotentialen weiter in das zentrale Nervensystem (ZNS) tragen.

Funktion

Reizaufnahme – Transduktion

Schematische Darstellung der Funktion einer Haarzelle. Links: Hemmung, Mitte: ohne Reizung, Rechts: Erregung.

Die für die Reizaufnahme entscheidende Struktur der Haarzellen bildet das Haarbündel. Die einzelnen Stereozilien sind an den Spitzen durch die Tip-Links verbunden. Diese Verbindungen setzen bei einer der beiden Stereozilien an einem Ionenkanal an, der je nach Spannung durch den Tip-Link geöffnet oder geschlossen wird. Die Öffnung der Kanäle führt zu einem Einstrom positiver Kaliumionen, die die Zelle damit depolarisieren. Ohne eine auslenkende Kraft, die auf das Haarbündel wirkt, sind die Kanäle nur teilweise geöffnet – die Zelle ist also in Ruhe mittelmäßig erregt. Bei Auslenkungen der Stereozilien in Richtung der Zilien werden die Kanäle geöffnet und führen über den Einstrom des Kaliums zu einer Erregung der Haarzelle. Auslenkungen entgegen der Zilie schließen die Kanäle. Bewegungen auf einer anderen Achse als der durch Zilienanordnung bestimmten führen nicht zu einer Veränderung der Kanalöffnung und spielen damit keine Rolle für den Erregungszustand der Zelle.

Weiterleitung der Erregung

Anders als die meisten Sinneszellen bilden Haarzellen keine Aktionspotentiale aus. Die Menge der ausgeschütteten Transmitter wird von der Höhe des Rezeptorpotentials bestimmt, welches wiederum von der Auslenkung der Stereozilien abhängt. Bei Haarzellen im Innenohr des Menschen spricht man daher auch von einem Mikrophonpotential.

Transduktionsmechanismus der Haarzellen im Innenohr

In der Cochlea des menschlichen Innenohres finden sich drei Reihen von äußeren und eine Reihe von inneren Haarzellen. Die sensorische Aufnahme mechanischer Bewegungen in der Cochlea erfolgt fast ausschließlich durch die inneren Haarzellen, während die äußeren Haarzellen v. a. efferente Innervierung durch übergeordnete Zentren des ZNS erhalten. Prinzipiell erfolgt die Transduktion der mechanischen Auslenkung der (inneren) Haarzellen im Innenohr in ein elektrisches Signal wie oben beschrieben durch Kaliumioneneinstrom. Es gibt jedoch einige Besonderheiten.

Ionenverteilung

Der untere, basale Teil der Haarzelle ist von Corti-Lymphe umgeben, die sich im inneren und äußeren Tunnel und dem Nuel-Raum des Corti-Organes befindet und die in ihrer Zusammensetzung der Perilymphe ähnlich ist – jener Flüssigkeit, welche die Scala vestibuli (und Scala tympani) füllt. Der Spitze der Haarzelle mit den Stereozilien befindet sich in der Endolymphe der Scala media. Die Perilymphe weist eine hohe Konzentration von Natrium- und eine niedrige Konzentration von Kaliumionen auf. In der Endolymphe ist dieses Verhältnis umgekehrt (viele Kaliumionen, wenig Natriumionen). Zwischen diesen beiden äußeren Bereichen der Haarzelle besteht ein Spannungsunterschied: die Endolymphe (oben) ist gegenüber der Perilymphe (unten) +85 mV positiv geladen. In Ruhestellung (wenn keine Auslenkung der Stereozilien erfolgt), ist das Zytoplasma der Haarzelle gegenüber der Perilymphe negativ geladen. Im oberen Teil der Haarzelle, der von der endolymphen Flüssigkeit umgeben ist, besteht zwischen dem Zelleninneren und der Umgebung ein Spannungsgefälle von −155 mV. Im unteren Zellbereich, welcher von der Perilymphe umgeben ist, besteht ein Spannungsunterschied zur Umgebung von −70 mV.[1]

Depolarisation

Werden die Stereozilien der Haarzellen durch mechanische Schwingungen der Basilarmembran der Cochlea in Richtung des längsten Stereoziliums ausgelenkt, bewirkt dies (wie oben beschrieben) über Tip-Link-Verbindungen die Öffnung von Kaliumkanälen in der Haarzellen. Im oberen Bereich der Haarzelle (Endolymphflüssigkeit) kommt es zu K-Ioneneinstrom. Dieser Einstrom kommt dadurch zustande, dass

  • in der umgebenden Endolymphe eine sehr viel größere Kaliumkonzentration als in der Zelle besteht
  • das Zelleninnere −155 mV negativer geladen ist als die Endolymphe

Letzteres führt dazu, dass positive Ladungen in Form von K-Ionen einströmen. Da das Gleichgewichtspotential von Kalium etwa −80 mV beträgt, ist Kalium „bestrebt“, die Spannungsdifferenz zwischen Zelläußerem und -innerem zu positivieren. Die Kaliumionen bewirken im Zellinneren die Öffnung weiterer Calciumkanäle, wodurch Calcium einströmt. Dies führt wie in anderen Neuronen zur Depolarisation und damit zur verstärkten Ausschüttung von Neurotransmittern an nachgeschaltete Neurone.

Hyperpolarisation

Die Besonderheit der Transduktion besteht darin, dass Kalium sowohl für die De- als auch für die Repolarisation zuständig ist. Die in den oberen Teil der Haarzelle eingeströmten Kaliumionen führen ihrerseits zur Öffnung weiterer Kaliumkanäle in der gesamten Zellmembran. Das durch die Depolarisation vermehrt vorhandene Calcium führt u. a. ebenfalls zur Öffnung von K-Kanälen. Im unteren, von Perilymphe umgebenen Zellbereich besteht jedoch mit −45 mV ein geringerer Spannungsunterschied zur Umgebung als im oberen Bereich. Das oben eingeströmte Kalium strömt über Kaliumkanäle im unteren Teil der Zelle wieder aus, da

  • in der Perilymphe im Vergleich zum Zellinneren eine sehr geringe Kaliumkonzentration herrscht
  • Kalium bestrebt ist, sein Gleichgewichtspotential von −80 mV herzustellen

Letzteres führt dazu, dass positive Ladungen in Form von K-Ionen ausströmen müssen, um die Spannungdifferenz von −45 mV auf −80 mV zu senken. Durch den Kaliumausstrom kommt es zur Repolarisation der Haarzelle.

Quellen

  1. Zenner H.-P.: Hören. Physiologie, Biochemie, Zell- und Neurobiologie. G. Thieme Verlag, Stuttgart, 1994.

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Haarzellen — Haarzellen,   besonders gestaltete Zellen, die als Mechanorezeptoren auf Druck , Biegungs und Scherkräfte reagieren; in Gleichgewichts , Gehör und Seitenlinienorganen …   Universal-Lexikon

  • Haarzellen — Haarzellen, Rezeptoren mechanischer Sinnesorgane verschiedener Wirbelloser (⇒ Sinneshaare) und der Wirbeltiere. Im ⇒ Innenohr und im ⇒ Seitenlinienorgan der Wirbeltiere tragen die H. regelmäßig angeordnete Mikrovilli, die Stereocilien oder… …   Deutsch wörterbuch der biologie

  • Haarsinneszelle — Haarzellen oder Haarsinneszellen sind ein Typ von sekundären Sinneszellen (Rezeptoren) im Nervensystem von Wirbeltieren, die mechanische Reize in Nervenaktivität umwandeln. Sie gehören damit zur Klasse der Mechanorezeptoren. Haarzellen können je… …   Deutsch Wikipedia

  • Haarzelle — Haarzellen oder Haarsinneszellen sind ein Typ von sekundären Sinneszellen (Rezeptoren) im Nervensystem von Wirbeltieren, die mechanische Reize in Nervenaktivität umwandeln. Sie gehören damit zur Klasse der Mechanorezeptoren. Haarzellen können je… …   Deutsch Wikipedia

  • Cochlea — Ausguss eines menschlichen Labyrinths Die Hörschnecke (lat. Cochlea) ist ein Teil des Innenohrs und stellt das Rezeptorfeld für die Hörwahrnehmung dar. Inhaltsverzeichnis 1 Aufbau der Hörschnecke …   Deutsch Wikipedia

  • Hörschnecke — Ausguss eines menschlichen Labyrinths Die Hörschnecke (lat. Cochlea) ist ein Teil des Innenohrs und stellt das Rezeptorfeld für die Hörwahrnehmung dar. Inhaltsverzeichnis …   Deutsch Wikipedia

  • Ohr: Bau und Arbeitsweise —   Das Ohr ist in das Außenohr, bestehend aus Ohrmuschel und dem durch das Trommelfell abgeschlossenen Gehörgang, das luftgefüllte Mittelohr und das flüssigkeitsgefüllte Innenohr unterteilt. Das Innenohr heißt wegen seiner schneckenhausartigen… …   Universal-Lexikon

  • Gleichgewichtsorgane und Beeinträchtigungen des Gleichgewichtssinns —   Das Ohr ist nicht nur für das Hören zuständig, es ist gleichzeitig das Organ für den Gleichgewichtssinn, der dafür sorgt, dass wir unseren Kopf und Körper aufrecht halten und unsere Körperhaltung an Lageveränderungen anpassen können.  … …   Universal-Lexikon

  • Transitorisch evozierte otoakustische Emissionen — (Abk. TEOAE, von griech. otos = Ohr) sind die akustische Antwort des Innenohrs auf einen kurzen, breitbandigen akustischen Reiz. Die TEOAE sind ein Phänomen, das am Gehör des Menschen und vieler Tiere beobachtet werden kann. Kurze Schallreize,… …   Deutsch Wikipedia

  • Corti-Organ — Schnitt durch die Hörschnecke: Aufbau des Corti Organs Das Corti Organ (Cortisches Organ, lat. Organon spirale) ist die Bezeichnung für die Schnittstelle zwischen den akustischen mechanischen Schwingungen und den Nervensignalen in der Schnecke… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”