Halbe charakteristische Funktion

Halbe charakteristische Funktion

Die halbe charakteristische Funktion oder partielle charakteristische Funktion ist eine Funktion der Mathematik, die eine Menge identifiziert. Sie ist folgendermaßen definiert: χ'A : A → {1}, a → 1.

Wie man sehen kann, steckt die ganze „Magie“ der Funktion im Definitionsbereich. Ist nun A eine Teilmenge einer größeren Menge B, so ist χ'A auf B\A undefiniert. Man erhält dann:


\chi'_A:B\to \{0,1\},\;\;a\mapsto 
\begin{cases}
  1 & \mbox{ falls } a \in A \\
  \mbox{undefiniert} & \mbox{ sonst }
\end{cases}

Semi-Berechenbarkeit

Die halbe charakteristische Funktion kann auf B alle Elemente nennen, die zu A gehören, aber Elemente, die nicht zu A gehören, nicht recht ausschließen. Man spricht davon, χ'A sei partiell. Ist nun χ'A außerdem berechenbar, so nennt man A semi-berechenbar oder rekursiv aufzählbar, da man zwar alle Elemente aufzählen kann, aber die Elemente B\A nicht ausschließen kann. Dafür benötigt man die charakteristische Funktion, die total ist.

Siehe auch


Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Partielle charakteristische Funktion — Die halbe charakteristische Funktion oder partielle charakteristische Funktion ist eine Funktion der Mathematik, die eine Menge identifiziert. Sie ist folgendermaßen definiert: χ A : A → {1}, a → 1. Wie man sehen kann, steckt die ganze „Magie“… …   Deutsch Wikipedia

  • Aufzählbar — Die rekursive Aufzählbarkeit ist ein Begriff aus der Berechenbarkeitstheorie. Er gibt Aufschluss darüber, ob sich die Elemente einer vorgegebenen Menge schrittweise von einem Computer erzeugen lassen. Inhaltsverzeichnis 1 Definition 2… …   Deutsch Wikipedia

  • Aufzählbare Menge — Die rekursive Aufzählbarkeit ist ein Begriff aus der Berechenbarkeitstheorie. Er gibt Aufschluss darüber, ob sich die Elemente einer vorgegebenen Menge schrittweise von einem Computer erzeugen lassen. Inhaltsverzeichnis 1 Definition 2… …   Deutsch Wikipedia

  • Aufzählbarkeit — Die rekursive Aufzählbarkeit ist ein Begriff aus der Berechenbarkeitstheorie. Er gibt Aufschluss darüber, ob sich die Elemente einer vorgegebenen Menge schrittweise von einem Computer erzeugen lassen. Inhaltsverzeichnis 1 Definition 2… …   Deutsch Wikipedia

  • Rekursiv aufzählbar — Die rekursive Aufzählbarkeit ist ein Begriff aus der Berechenbarkeitstheorie. Er gibt Aufschluss darüber, ob sich die Elemente einer vorgegebenen Menge schrittweise von einem Computer erzeugen lassen. Inhaltsverzeichnis 1 Definition 2… …   Deutsch Wikipedia

  • Berechenbare Menge — Als semi entscheidbare Menge (auch halb entscheidbare Menge) wird in der Berechenbarkeitstheorie eine Menge A bezüglich einer Grundmenge M bezeichnet, wenn ihre partielle charakteristische Funktion definiert durch berechenbar ist. Die Menge M… …   Deutsch Wikipedia

  • Rekursiv aufzählbare Menge — Als semi entscheidbare Menge (auch halb entscheidbare Menge) wird in der Berechenbarkeitstheorie eine Menge A bezüglich einer Grundmenge M bezeichnet, wenn ihre partielle charakteristische Funktion definiert durch berechenbar ist. Die Menge M… …   Deutsch Wikipedia

  • Semi-Entscheidbarkeit — Als semi entscheidbare Menge (auch halb entscheidbare Menge) wird in der Berechenbarkeitstheorie eine Menge A bezüglich einer Grundmenge M bezeichnet, wenn ihre partielle charakteristische Funktion definiert durch berechenbar ist. Die Menge M… …   Deutsch Wikipedia

  • Semi-entscheidbar — Als semi entscheidbare Menge (auch halb entscheidbare Menge) wird in der Berechenbarkeitstheorie eine Menge A bezüglich einer Grundmenge M bezeichnet, wenn ihre partielle charakteristische Funktion definiert durch berechenbar ist. Die Menge M… …   Deutsch Wikipedia

  • Rekursive Aufzählbarkeit — Die rekursive Aufzählbarkeit ist ein Begriff aus der Berechenbarkeitstheorie. Er gibt Aufschluss darüber, ob sich die Elemente einer vorgegebenen Menge schrittweise von einem Computer erzeugen lassen. Inhaltsverzeichnis 1 Definition 2… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”