- Hilbert-Matrix
-
Die Hilbert-Matrix der Ordnung ist folgende quadratische, symmetrische, positiv definite Matrix:
- ,
die einzelnen Komponenten sind also durch gegeben. Dem historischen Zugang entspricht die Darstellung mit Integral: .
Sie wurde vom deutschen Mathematiker David Hilbert 1894 im Zusammenhang mit der Theorie der Legendre-Polynome definiert. Da die Matrix positiv definit ist, existiert ihre Inverse, d. h. ein lineares Gleichungssystem mit diesen Koeffizienten ist eindeutig lösbar. Die Hilbert-Matrix bzw. das betreffende Gleichungssystem ist jedoch vergleichsweise schlecht konditioniert, und zwar umso schlechter, je größer n ist. Die Konditionszahl wächst exponentiell mit n; die Konditionszahl von H3 ist 526,16 (Frobeniusnorm), diejenige von H4 15'613,8. Das heißt, dass bei der Berechnung der Inversen (der Auflösung des Gleichungssystems) immer größere Zahlen auftreten, je größer n ist. Daher ist die Hilbert-Matrix ein klassischer Testfall für Computer-Programme zur Inversion von Matrizen bzw. Auflösung linearer Gleichungssysteme, z. B. mit dem Gauß-Verfahren, LR-Zerlegung, Cholesky-Zerlegung, usw. Alle Komponenten der inversen Matrix sind ganze Zahlen mit alternierenden Vorzeichen.
Die Komponenten der Inversen der Hilbert-Matrix können durch geschlossene Formeln direkt berechnet werden:
- ,
was man auch durch Binomialkoeffizienten ausdrücken kann:
- .
Im Spezialfall i = j = 1 reduziert sich das zu:
- .
Dass die Inverse der Hilbert-Matrix exakt berechnet werden kann, ist besonders nützlich, wenn z. B. bei einem Test das Ergebnis der numerischen Inversion einer Hilbert-Matrix mit einer LR- oder Cholesky-Zerlegung, die naturgemäß durch Rundungsfehler beeinträchtigt ist, beurteilt werden soll.
Determinante
Die Determinante der Inversen der Hilbert-Matrix kann ebenfalls mit Hilfe folgender Formel exakt berechnet werden:
Als Determinante der Hilbert-Matrix ergibt sich somit der Reziprokwert der Inversen mit . Die Determinanten der Inversen für lauten damit 1, 12, 2160, 6048000 und 266716800000.
Zahlenbeispiele für Inverse
Aus obigen Formeln ergibt sich für die (exakte) Inverse in den Fällen n = 2,3,4,5:
- ,
- ,
- ,
- .
Für eigenes Experimentieren mit Hilbert- (und natürlich auch mit allen anderen) Matrizen sind moderne Mathematik-Software-Pakete wie MATLAB, Maple oder Mathematica nützlich. Z. B. mit Mathematica kann die letzte Inverse durch folgenden Befehl berechnet werden:
Inverse für n = 5 berechnen:
In[1] := Inverse[HilbertMatrix[5]]//TraditionalForm
Die schlechte Kondition der Hilbert-Matrix bedeutet praktisch, dass die Zeilen- (und folglich auch die Spalten-) Vektoren fast linear abhängig sind. Geometrisch äußert sich das u. a. darin, dass die Winkel zwischen den Zeilenvektoren sehr klein sind, und zwar zwischen den letzten Zeilenvektoren jeweils am kleinsten; so ist z. B. der Winkel zwischen dem letzten und dem vorletzten Zeilenvektor von H4 kleiner als 3° (im Bogenmaß: kleiner als ). Bei größeren n sind die Winkel entsprechend noch kleiner. Der Winkel zwischen dem ersten Zeilenvektor von H3 und der Ebene, die von den beiden anderen Zeilenvektoren aufgespannt wird, ist etwas kleiner als 1,3°, die entsprechenden Winkel für die beiden anderen Zeilenvektoren sind noch kleiner; auch diese Winkel sind bei größeren n noch kleiner.
Literatur
- David Hilbert: Ein Beitrag zur Theorie des Legendreschen Polynoms. Acta Mathematica, vol. 18, 155-159, 1894 (Volltext)
- Gene H. Golub & Charles F. Van Loan: Matrix computations. Johns Hopkins University Press, 1996 (3rd edition) ISBN 0-80185414-8 (in englischer Sprache)
Wikimedia Foundation.