- Hilfssatz
-
Ein Hilfssatz oder Lemma (gr. λήμμα ‚Einnahme‘, ‚Annahme‘) ist eine mathematische oder logische Aussage, die im Beweis eines Satzes verwendet wird, der aber selber nicht der Rang eines Satzes eingeräumt wird. Die Unterscheidung von Sätzen und Lemmata ist fließend und nicht objektiv.
Beispiel
Man kann beispielsweise zeigen, dass irrational ist (als Satz), wenn man voraussetzen kann, dass Quadrate gerader Zahlen wieder gerade sind, Quadrate ungerader Zahlen jedoch stets ungerade Zahlen ergeben (diese Aussage entspräche dem Lemma). Um strukturierter vorzugehen, beweist man die beiden Tatsachen einzeln, wobei die Tatsache des Hilfssatzes (des Lemmas) später auf weitere Fälle oder Beweise angewendet werden kann, wohingegen der „Satz“ eine spezielle Aussage liefert.
Um das vorangegangene Beispiel umzusetzen, ginge man (zum Beispiel in einer Vorlesung) folgendermaßen vor.
Lemma: Quadrate gerader und ungerader ganzer Zahlen sind stets gerade bzw. ungerade.
Beweis: Sei vorgegeben. Zu zeigen ist, dass x2 der entsprechenden Behauptung genügt, d. h. wenn x = 2y (gerade) bzw. x = 2y + 1 (ungerade) für ein ist, dann ist x2 gerade bzw. ungerade.
Beide Fälle werden separat behandelt. Im ersten Fall (x = 2y) hat man (gemäß den Potenzrechenregeln) , also eine gerade Zahl. Im anderen Fall (x = 2y + 1) ergibt sich (nach Binomischer Formel) , also eine ungerade Zahl.
Satz: ist irrational, also gilt .
Beweis: Die behauptete Aussage wird bewiesen, indem die Annahme, das Gegenteil sei richtig, zum Widerspruch geführt wird (Widerspruchsbeweis).
Es wird angenommen, es gelte . Dann gibt es zueinander teilerfremde und mit . Quadriert man diese Gleichung und multipliziert beide Seiten mit b2, erhält man . Weil die linke Seite gerade ist, ist auch die rechte gerade. Nach dem vorausgegangenen Lemma ist dann auch a gerade (denn wäre a ungerade, wäre a2 ungerade) und es gibt ein mit a = 2c. Aus der Gleichung folgt , woraus man erkennt, dass b2 und damit auch b (wieder wegen des Lemmas) gerade sind. Dies widerspricht der Annahme, dass a und b teilerfremd gewählt worden sind. Damit ist die Annahme, sei rational, falsch und der Satz ist bewiesen.
Beim Beweis wurde zweimal das vorausgehende Lemma benutzt.
Weblinks
Wikimedia Foundation.