Holonomiegruppe

Holonomiegruppe

Der mathematische Begriff der Holonomiegruppe eines Zusammenhangs eines Vektor- oder Hauptfaserbündels über einer Differenzierbaren Mannigfaltigkeit (abgekürzt auch einfach Holonomie) bezeichnet in der Differentialgeometrie die Gruppe linearer Transformationen, die durch den Paralleltransport von Vektoren entlang geschlossener Kurven induziert wird. Trägt eine Mannigfaltigkeit M eine Riemannsche Metrik, so ist deren Holonomiegruppe durch diejenige des Levi-Civita-Zusammenhangs auf dem Tangentialbündel von M gegeben.

Bedeutung in der Physik

Holonomiegruppen spielen eine große Rolle in der theoretischen Physik, sowohl in der Quantenfeldtheorie (siehe Wilson-Loop), als auch im Besonderen in der Stringtheorie. Hier ist die Holonomiegruppe von kompakten sechs- und siebendimensionalen Mannigfaltigkeiten von Interesse, da bei einer Kompaktifizierung der Theorie auf diesen Räumen die Anzahl der erhaltenen Supersymmetrie von der maximalen Anzahl kovariant konstanter Spinoren abhängt, welche wiederum von der Holonomie bestimmt wird. Mannigfaltigkeiten von besonderem Interesse sind sechsdimensionale Calabi-Yau-Mannigfaltigkeiten mit SU(3)-Holonomie, sowie siebendimensionale Mannigfaltigkeiten mit G2-Holonomie.

Weblinks


Wikimedia Foundation.

Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Calabi-Yau — Ein Schnitt durch eine Calabi Yau, die Quintik Mit Calabi Yau Mannigfaltigkeit, kurz Calabi Yau, bezeichnet man in der Mathematik spezielle komplexe Mannigfaltigkeiten, die eine Rolle in der algebraischen Geometrie spielen. Die theoretische… …   Deutsch Wikipedia

  • Calabi-Yau-Mannigfaltigkeit — Ein Schnitt durch eine Calabi Yau, die Quintik Mit Calabi Yau Mannigfaltigkeit, kurz Calabi Yau, bezeichnet man in der Mathematik spezielle komplexe Mannigfaltigkeiten, die eine Rolle in der algebraischen Geometrie spielen. Die theoretische… …   Deutsch Wikipedia

  • Calabi-Yau-Raum — Ein Schnitt durch eine Calabi Yau, die Quintik Mit Calabi Yau Mannigfaltigkeit, kurz Calabi Yau, bezeichnet man in der Mathematik spezielle komplexe Mannigfaltigkeiten, die eine Rolle in der algebraischen Geometrie spielen. Die theoretische… …   Deutsch Wikipedia

  • Holonomie — Der mathematische Begriff der Holonomiegruppe eines Zusammenhangs eines Vektor oder Hauptfaserbündels über einer differenzierbaren Mannigfaltigkeit (abgekürzt auch einfach Holonomie) bezeichnet in der Differentialgeometrie die Gruppe linearer… …   Deutsch Wikipedia

  • Dominic Joyce — (* 8. April 1968) ist ein britischer Mathematiker, der sich mit Differentialgeometrie beschäftigt. Joyce studierte am Merton College der Universität Oxford und promovierte 1992 bei Simon Donaldson (Hyper Complex and Quaternionic Manifolds and… …   Deutsch Wikipedia

  • Fjodor Alexejewitsch Bogomolow — Fjodor Bogomolow Fjodor Alexejewitsch Bogomolow (russisch Фёдор Алексеевич Богомолов; englische Transkription Fedor Alekseevich Bogomolov; * 26. September 1946 in Moskau) ist ein russisch US amerikanischer Mathematiker, der sich mit… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”