Komplementäres Ereignis

Komplementäres Ereignis

Der Begriff Ereignis (auch: Zufallsereignis) bezeichnet in der Wahrscheinlichkeitstheorie eine messbare Menge von Ergebnissen eines Wahrscheinlichkeitsraumes, grob gesprochen also in etwa eine Menge möglicher Ergebnisse eines Zufallsexperiments. Bei einem Würfelwurf entspricht beispielsweise das Ereignis „eine gerade Zahl würfeln“ der Menge {2,4,6}, eine Teilmenge aller möglichen Ergebnisse. Man spricht davon, dass ein Ereignis eintritt, wenn eines seiner Elemente Ausgang eines Zufallsexperiments ist.

Das mit der Ergebnismenge Ω identische Ereignis bezeichnet man als sicheres Ereignis, da es immer eintritt. Im Gegensatz dazu bezeichnet man das mit der leeren Menge identische Ereignis als unmögliches Ereignis. Es tritt nie ein. Beim Beispiel des Würfelwurfs ist das sichere Ereignis die Menge {1,2,3,4,5,6} und das unmögliche Ereignis die Menge \varnothing.

Inhaltsverzeichnis

Gleichheit von Ereignissen

Wenn das Ereignis A das Ereignis B in gleicher Weise nach sich zieht wie das Ereignis B das Ereignis A, dann bezeichnet man die Ereignisse A und B als gleich. A = B

Untermenge

Tritt mit dem Ereignis A stets auch das Ereignis B ein, dann zieht das Ereignis A das Ereignis B nach sich, A\subseteq B, A bildet eine Untermenge von B.

Ausschließen

Wenn das gleichzeitige Auftreten von zwei Ereignissen A und B unmöglich ist, dann heißt es, die zwei Ereignisse schließen einander aus, A \cap B = \varnothing.

Komplementäres Ereignis

Das zu dem Ereignis A komplementäre Ereignis (Gegenereignis) \bar{A} tritt genau dann ein, wenn das Ereignis A nicht eintritt und wird mit \Omega\backslash A bezeichnet. Speziell gilt:

A\backslash B = A \cap \bar{B}

Summe von Ereignissen

Tritt ein Ereignis C genau dann ein, wenn mindestens eines der Ereignisse A oder B eintritt, dann bezeichnet man das Ereignis C als die Summe der Ereignisse und benutzt dafür die Notation C=A \cup B. In Verallgemeinerung auf n Ereignisse schreibt man:

C=\bigcup_{i=1}^n A_i

Differenz von Ereignissen

Wenn ein Ereignis C nur dann eintritt, wenn ein Ereignis A, aber nicht gleichzeitig das Ereignis B eintritt, dann bezeichnet man das Ereignis C als Differenz der beiden Ereignisse A und B.

Produkt von Ereignissen

Tritt ein Ereignis C genau dann ein, wenn sowohl das Ereignis A als auch das Ereignis B eintritt, dann heißt C das Produkt der Ereignisse mit der Notation C=A \cap B. In Verallgemeinerung auf n Ereignisse schreibt man:

C=\bigcap_{i=1}^n A_i

Unabhängige Ereignisse

Die zwei Ereignisse A und B heißen voneinander unabhängig, wenn

 P ( A \cap B ) = P ( A ) \cdot P ( B ).

Unter Verwendung der Formel für die bedingte Wahrscheinlichkeit lässt sich das als

P(A) = P(A | B)

schreiben, vorausgesetzt P(B) > 0.

Vollständiges System von Ereignissen

Die Ereignisse A_i (i=1,\dots ,n) bilden ein vollständiges System von Ereignissen (oder Ereignisssytem), wenn im Ergebnis eines Versuchs genau eines von ihnen eintreten muss.

\bigcup_{i=1}^{n} A_i = \Omega \quad A_i\cap A_j=\emptyset \quad i\neq j\quad i,j=1,\dots ,n

Beispiel: Die Ereignisse A\cap B, \bar{A}\cap B, A\cap \bar{B}, \overline{A\cup B} bilden ein solches vollständiges System von Ereignissen.

Formel von de Morgan

Sind A_1, A_2, \dots zufällige Ereignisse, dann gelten die de Morganschen Formeln

\overline{\bigcap_{i=1}^\infty A_i} = \bigcup_{i=1}^\infty \bar{A}_i
\overline{\bigcup_{i=1}^\infty A_i} = \bigcap_{i=1}^\infty \bar{A}_i

Siehe auch

Im Artikel Wahrscheinlichkeitstheorie wird der Begriff Ereignis im Kontext mit den anderen Grundbegriffen der Wahrscheinlichkeitstheorie dargestellt.

Literatur

  • Rainer Schlittgen: Einführung in die Statistik. 9. Auflage. Oldenbourg Wissenschaftsverlag, Oldenbourg 2000, ISBN 3-486-27446-5

Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Ereignis (Wahrscheinlichkeitstheorie) — Der Begriff Ereignis (auch Zufallsereignis) bezeichnet in der Wahrscheinlichkeitstheorie eine messbare Menge von Ergebnissen eines Wahrscheinlichkeitsraumes, grob gesprochen also in etwa eine Menge möglicher Ergebnisse eines Zufallsexperiments.… …   Deutsch Wikipedia

  • Sicheres Ereignis — Der Begriff Ereignis (auch: Zufallsereignis) bezeichnet in der Wahrscheinlichkeitstheorie eine messbare Menge von Ergebnissen eines Wahrscheinlichkeitsraumes, grob gesprochen also in etwa eine Menge möglicher Ergebnisse eines Zufallsexperiments.… …   Deutsch Wikipedia

  • Unmögliches Ereignis — Der Begriff Ereignis (auch: Zufallsereignis) bezeichnet in der Wahrscheinlichkeitstheorie eine messbare Menge von Ergebnissen eines Wahrscheinlichkeitsraumes, grob gesprochen also in etwa eine Menge möglicher Ergebnisse eines Zufallsexperiments.… …   Deutsch Wikipedia

  • Gegenereignis — Der Begriff Ereignis (auch: Zufallsereignis) bezeichnet in der Wahrscheinlichkeitstheorie eine messbare Menge von Ergebnissen eines Wahrscheinlichkeitsraumes, grob gesprochen also in etwa eine Menge möglicher Ergebnisse eines Zufallsexperiments.… …   Deutsch Wikipedia

  • Zufallsereignis — Der Begriff Ereignis (auch: Zufallsereignis) bezeichnet in der Wahrscheinlichkeitstheorie eine messbare Menge von Ergebnissen eines Wahrscheinlichkeitsraumes, grob gesprochen also in etwa eine Menge möglicher Ergebnisse eines Zufallsexperiments.… …   Deutsch Wikipedia

  • Bernoulli-Versuch — Zufallsgrößen mit einer Null Eins Verteilung bzw. Bernoulli Verteilung benutzt man zur Beschreibung von zufälligen Ereignissen, bei denen nur zwei mögliche Versuchsausgänge interessieren, das zufällige Ereignis (Erfolg) und sein komplementäres… …   Deutsch Wikipedia

  • Bernoulliversuch — Zufallsgrößen mit einer Null Eins Verteilung bzw. Bernoulli Verteilung benutzt man zur Beschreibung von zufälligen Ereignissen, bei denen nur zwei mögliche Versuchsausgänge interessieren, das zufällige Ereignis (Erfolg) und sein komplementäres… …   Deutsch Wikipedia

  • Bernoulliverteilung — Zufallsgrößen mit einer Null Eins Verteilung bzw. Bernoulli Verteilung benutzt man zur Beschreibung von zufälligen Ereignissen, bei denen nur zwei mögliche Versuchsausgänge interessieren, das zufällige Ereignis (Erfolg) und sein komplementäres… …   Deutsch Wikipedia

  • Null-Eins-Verteilung — Zufallsgrößen mit einer Null Eins Verteilung bzw. Bernoulli Verteilung benutzt man zur Beschreibung von zufälligen Ereignissen, bei denen nur zwei mögliche Versuchsausgänge interessieren, das zufällige Ereignis (Erfolg) und sein komplementäres… …   Deutsch Wikipedia

  • Epistemologie — Bild dessen, was ich sehe. Welche Teile dieses Bildes gehören zu „mir“, welche zur „Außenwelt“, wie leiste ich die Zuordnung? Abbildung aus Ernst Mach, Die Analyse der Empfindungen (1900), S. 15. Die Erkenntnistheorie oder Epistemologie ist neben …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”