Least Mean Squares

Least Mean Squares

Der LMS-Algorithmus (Least-Mean-Squares-Algorithmus) ist ein Algorithmus zur Approximation der Lösung des Least-Mean-Squares Problems, das z. B. in der digitalen Signalverarbeitung vorkommt. In der Neuroinformatik ist der Algorithmus vor allem als Delta-Regel oder Widrow-Hoff-Regel bekannt.

Der Algorithmus beruht auf der sogenannten Methode des steilsten Abstiegs (Gradientenverfahren) und schätzt den Gradienten auf einfache Art. Der Algorithmus arbeitet zeitrekursiv, d. h. mit jedem neuen Datensatz wird der Algorithmus einmal durchlaufen und die Lösung aktualisiert. Die Regel wurde erstmals 1960 von Bernard Widrow und Marcian Edward Hoff für das Einlernen des Adaline-Modells verwendet.

Der LMS-Algorithmus wird auf Grund seiner geringen Komplexität häufig eingesetzt. Einsatzgebiete sind u. a. adaptive Filter, adaptive Regelungen und Online-Identifikationsverfahren.

Ein bedeutender Nachteil des LMS-Algorithmus ist die Abhängigkeit seiner Konvergenzgeschwindigkeit von den Eingangsdaten, d. h. der Algorithmus findet unter ungünstigen Umständen möglicherweise keine Lösung. Ungünstige Umstände sind die schnelle zeitliche Änderung der Eingangsdaten.

Algorithmus

Ziel sei es die Koeffizienten eines FIR-Filters so zu bestimmen, dass der Fehler zwischen Ausgangsdaten der Filters \vec x(n)^T \vec w(n) und vorgegebenen Referenzdaten y(n) minimiert wird.

Der LMS-Algorithmus hat dann folgende Form:

e(n) = y(n) - \vec x(n)^T \vec w(n)

\vec w(n+1) = \vec w(n) + \mu e(n) \vec x(n)

Dabei ist \vec x(n) ein Vektor mit Eingangsdaten der Zeitpunkte n-(M+1) bis n, y(n) ein Referenzdatum zum Zeitpunkt n, \vec w(n) der aktuelle Vektor der Filtergewichte des Transversalfilters der Ordnung M, μ ein Faktor zur Einstellung der Geschwindigkeit und Stabilität der Adaption und \vec w(n+1) der neu zu bestimmende Filtervektor der Ordnung M. Es wird also zu jedem Zeitpunkt der aktuelle Fehler bestimmt und daraus die neuen Filtergewichte \vec w(n+1) berechnet.

Verwendung in der Neuroinformatik

Der LMS-Algorithmus gehört zur Gruppe der überwachten Lernverfahren. Dazu muss ein externer Lehrer existieren, der zu jedem Zeitpunkt der Eingabe die gewünschte Ausgabe, den Zielwert, kennt.

Er kann auf jedes einschichtige künstliche neuronale Netz angewendet werden, dabei muss die Aktivierungsfunktion differenzierbar sein. Das Backpropagation-Verfahren verallgemeinert diesen Algorithmus und kann auch auf mehrschichtige Netze angewandt werden.


Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Least mean squares filter — Least mean squares (LMS) algorithms are a class of adaptive filter used to mimic a desired filter by finding the filter coefficients that relate to producing the least mean squares of the error signal (difference between the desired and the… …   Wikipedia

  • Least-squares spectral analysis — (LSSA) is a method of estimating a frequency spectrum, based on a least squares fit of sinusoids to data samples, similar to Fourier analysis. [cite book | title = Variable Stars As Essential Astrophysical Tools | author = Cafer Ibanoglu |… …   Wikipedia

  • Recursive least squares filter — Recursive least squares (RLS) algorithm is used in adaptive filters to find the filter coefficients that relate to recursively producing the least squares (minimum of the sum of the absolute squared) of the error signal (difference between the… …   Wikipedia

  • Least squares — The method of least squares is a standard approach to the approximate solution of overdetermined systems, i.e., sets of equations in which there are more equations than unknowns. Least squares means that the overall solution minimizes the sum of… …   Wikipedia

  • Mean and predicted response — In linear regression mean response and predicted response are values of the dependent variable calculated from the regression parameters and a given value of the independent variable. The values of these two responses are the same, but their… …   Wikipedia

  • Mean squared error — In statistics, the mean squared error (MSE) of an estimator is one of many ways to quantify the difference between values implied by a kernel density estimator and the true values of the quantity being estimated. MSE is a risk function,… …   Wikipedia

  • Mean — This article is about the statistical concept. For other uses, see Mean (disambiguation). In statistics, mean has two related meanings: the arithmetic mean (and is distinguished from the geometric mean or harmonic mean). the expected value of a… …   Wikipedia

  • Mean absolute error — In statistics, the mean absolute error (MAE) is a quantity used to measure how close forecasts or predictions are to the eventual outcomes. The mean absolute error is given by As the name suggests, the mean absolute error is an average of the… …   Wikipedia

  • Total least squares — The bivariate (Deming regression) case of Total Least Squares. The red lines show the error in both x and y. This is different from the traditional least squares method which measures error parallel to the y axis. The case shown, with deviations… …   Wikipedia

  • Ordinary least squares — This article is about the statistical properties of unweighted linear regression analysis. For more general regression analysis, see regression analysis. For linear regression on a single variable, see simple linear regression. For the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”