Asymptote

Asymptote
Die hier rot dargestellte Funktion f(x)=(1/x)+x besitzt die grün dargestellte Asymptote y=x

Eine Asymptote (von altgriechisch ἀσύμπτωτος asýmptōtos „nicht übereinstimmend“[1]) bezeichnet in der Mathematik, vereinfachend ausgedrückt, eine Kurve von einer bestimmten Form, die sich einer vorgegebenen Kurve bzw. einer Funktion in einem Grenzprozess „beliebig annähert“.

Inhaltsverzeichnis

Asymptote einer Kurve

Die hier gegebene Darstellung von Asymptoten ist mehr eine Beschreibung als eine formal saubere Definition.

Kurven im hier betrachteten Sinne sind in einem gewissen Sinne „eindimensionale“ Teilmengen eines euklidischen Raums \mathbb{R}^n, meist der euklidischen Ebene: Mathematisch sauber definierte Beispiele solcher Kurven sind die Bilder von Wegen, algebraische Kurven und Graphen von stetigen Funktionen mit abzählbar vielen Definitionslücken (dies trifft auf die meisten in der Schule betrachteten Funktionen zu). „Schmiegt“ sich ein Graph an eine Gerade an, so heißt diese Gerade Asymptote.

Eine Asymptote einer solchen Kurve k ist eine Gerade g, die sich der Kurve „im Unendlichen beliebig annähert“. Präziser bedeutet das, dass der Abstand, den ein Punkt P von g zur Kurve k hat, gegen 0 konvergiert, wenn P entlang der Geraden ins Unendliche wandert. Formal könnte man es so aufschreiben:

\lim_{P\in g,|P|\to\infty} d(P,k) = 0

Dabei ist der Abstand von P zu k definiert als das Infimum der Abstände von P zu den Punkten von k:

d(P,k) := \inf_{K\in k} d(P,K)

Für eine algebraische Kurve lässt sich der Asymptotenbegriff aus Sicht der projektiven Geometrie auch so beschreiben:

Eine Asymptote ist eine Tangente im Unendlichen.

Asymptote einer Funktion

Eine Asymptote ist ein Graph (zum Beispiel eine Gerade), der sich dem Graphen einer gegebenen Funktion beliebig weit annähert. Asymptoten von Funktionen betrachtet man insbesondere im Rahmen einer Kurvendiskussion.

Man hat dabei eine Funktion f von D nach \mathbb R vorgegeben, deren Definitionsbereich D eine Teilmenge von \mathbb R ist.

Man unterscheidet zwischen zwei verschiedenen Typen von Asymptoten, da sich eine Funktion entweder in x- oder in y-Richtung annähern kann.

Annäherung in y-Richtung

Hat f an der Stelle t eine Polstelle, d. h. gilt

\lim_{x\nearrow t} f(x) = \pm\infty\,\, oder \,\,\lim_{x\searrow t} f(x) = \pm\infty,

dann nennt man die Gerade x = t eine senkrechte (oder vertikale) Asymptote von f oder eine Polgerade von f.

Annäherung in x-Richtung

Konvergiert f für x gegen \infty gegen eine reelle Zahl h, d. h. gilt

\lim_{x\to \infty} f(x) = h,

dann nennt man die Gerade y = h eine waagerechte (oder horizontale) Asymptote von f. Analoges gilt für den Grenzwert x \to -\infty.

Ist p: RR eine Gerade, der sich f beim Grenzübergang nach +\infty oder -\infty beliebig annähert, d. h. gilt

\lim_{x\to\infty} [f(x)-p(x)] = 0 oder \lim_{x\to-\infty} [f(x)-p(x)] = 0,

dann nennt man p eine schräge Asymptote von f.

Diese drei Arten von Asymptoten zusammen ergeben genau die Asymptoten des Graphen von f, aufgefasst als Kurve im Sinne des oberen Abschnittes „Asymptote einer Kurve“.

Der Begriff der schrägen Asymptote wird manchmal dahingehend verallgemeinert, statt Geraden bestimmte „einfache“ Funktionen zuzulassen, die die obige Limes-Bedingung erfüllen (Näherungskurven).

So kann man zum Beispiel beliebige Polynome als schräge Asymptoten zulassen. Ist f = g/h eine rationale Funktion (mit Polynomen g und h), dann hat f stets eine schräge Asymptote in diesem Sinne. Sie ist das bei Polynomdivision von g durch h entstehende Polynom p. Der senkrechte Abstand von f zu p wird durch die echt gebrochenrationale Restfunktion angegeben, die dieselben senkrechten Asymptoten wie f hat und zusätzlich die waagerechte Asymptote y = 0.

Man kann aber auch beliebige andere Klassen von Funktionen zu schrägen Asymptoten erklären, sofern sie die Limes-Bedingung erfüllen. Je nach Verwendungszweck ist die eine oder andere Definition angemessener.

Beispiele

Die Funktion (siehe Hyperbel)


  f_1(x) = \frac{1}{x}

hat die Polstelle, bzw. senkrechte Asymptote bei x = 0 und die waagerechte Asymptote y = 0.

Asymptoten von 1/x

Die Funktion


  f_2(x) = \frac{x^3-x^2+5}{5x-5} = \frac{x^3-x^2}{5x-5}+ \frac{1}{x-1} 
= \frac{1}{5}x^2 + \frac{1}{x-1}

hat die Polstelle bei x = 1 und (wenn man Polynome als schräge Asymptoten zulässt) die Näherungsparabel p(x) = \frac{1}{5}x^2.

Asymptoten von (x^3-x^2+5)/(5x-5)

Quellen

  1. Duden, das große Fremdwörterbuch, Mannheim & Leipzig, 2000, ISBN 3-411-04162-5

Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • asymptote — [ asɛ̃ptɔt ] n. f. et adj. • 1638; gr. asumptôtos, de sumpiptein « tomber sur » ♦ Math. 1 ♦ Droite telle que la distance d un point d une courbe à cette droite tend vers zéro lorsque le point s éloigne sur la courbe à l infini; tangente à une… …   Encyclopédie Universelle

  • Asymptote — einer Kurve heißt jede nicht ganz im Unendlichen liegende Tangente derselben, deren Berührungspunkt unendlich entfernt ist. Die Kurve nähert sich einer solchen unaufhörlich, ohne sie, theoretisch gesprochen, im Endlichen zu erreichen. Jedoch kann …   Lexikon der gesamten Technik

  • Asymptote — Тип язык описания …   Википедия

  • Asymptote — Saltar a navegación, búsqueda El logo de Asymptote (creado con Asymptote). Asymptote es un lenguaje de gráficos vectoriales descriptivo, desarrollado por Andy Hammerlindl, John C. Bowman (Universidad de Alberta), y Tom Prince, que brinda un… …   Wikipedia Español

  • Asymptote — As ymp*tote (?; 215), n. [Gr. ? not falling together; a priv. + ? to fall together; ? with + ? to fall. Cf. {Symptom}.] (Math.) A line which approaches nearer to some curve than assignable distance, but, though infinitely extended, would never… …   The Collaborative International Dictionary of English

  • Asymptōte — (v. gr., die nicht Zusammenfallende, Math.), eine Linie, die, unbestimmt verlängert, sich einer ebenfalls verlängerten krummen Linie immer mehr nähert, ohne sie je zu schneiden. Man kann die A. als eine, die Curve in der Unendlichkeit Berührende… …   Pierer's Universal-Lexikon

  • Asymptōte — (griech., die »Nichtzusammenfallende«) einer sich ins Unendliche erstreckenden Kurve heißt jede Gerade, die, je weiter man sie verlängert, der Kurve immer näher kommt, so daß der Abstand zwischen beiden schließlich kleiner wird als jede noch so… …   Meyers Großes Konversations-Lexikon

  • Asymptote — Asymptōte (grch., die »Nichtzusammenfallende«), in der Geometrie eine meist gerade Linie, welche gegen eine krumme Linie so liegt, daß sich beide bei immer weiterer Verlängerung immer mehr nähern, ohne jemals zur Berührung zu kommen; z.B. hat die …   Kleines Konversations-Lexikon

  • Asymptote — Asymptote, (die nicht zusammenfallende) in der Geometrie gerade Linie, die verlängert einer ebenfalls verlängerten krummen Linie sich immer mehr nähert ohne sie je zu erreichen, selbst wenn man eine Verlängerung inʼs Unendliche annimmt …   Herders Conversations-Lexikon

  • asymptote — ASYMPTOTE. Voyez Asimptote …   Dictionnaire de l'Académie Française 1798

  • asymptote — (n.) straight line continually approaching but never meeting a curve, 1650s, from Gk. asymptotos not falling together, from a not + syn with + ptotos fallen, verbal adjective from piptein to fall (see PETITION (Cf. petition)). Related: Asymptotic …   Etymology dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”