- Kurve (Mathematik)
-
In der Mathematik ist eine Kurve ein eindimensionales Objekt.
Eindimensional bedeutet dabei informell, dass man sich auf der Kurve nur in einer Richtung (bzw. der Gegenrichtung) bewegen kann. Ob die Kurve in der zweidimensionalen Ebene liegt („ebene Kurve“) oder in einem höherdimensionalen Raum (siehe Raumkurve), ist in diesem begrifflichen Zusammenhang unerheblich.
Je nach Teilgebiet gibt es unterschiedliche Präzisierungen dieser Beschreibung.
Inhaltsverzeichnis
Parameterdarstellungen
Eine Kurve kann als das Bild eines Weges definiert werden. Ein Weg ist (abweichend von der Umgangssprache) eine stetige Abbildung von einem Intervall in den betrachteten Raum, also z. B. in die euklidische Ebene .
Beispiele:
- Die Abbildung
-
- beschreibt den Einheitskreis in der Ebene.
- Die Abbildung
-
- beschreibt eine Kurve mit einem einfachen Doppelpunkt bei (0,0), entsprechend den Parameterwerten t = 1 und t = − 1.
Gelegentlich, insbesondere bei historischen Bezeichnungen, wird zwischen Weg und Kurve nicht unterschieden. So ist die interessante Struktur bei der Hilbert-Kurve der Weg; das Bild dieses Weges ist das Einheitsquadrat, besitzt also keinerlei fraktale Struktur mehr.
Gleichungsdarstellungen
Eine Kurve kann auch durch eine oder mehrere Gleichungen in den Koordinaten beschrieben werden. Beispiele dafür sind:
- Die Gleichung
-
- x2 + y2 = 1
- beschreibt den Einheitskreis in der Ebene.
- Die Gleichung
-
- y2 = x2(x + 1)
- beschreibt die oben in Parameterdarstellung angegebene Kurve mit Doppelpunkt.
Ist die Gleichung wie hier durch ein Polynom gegeben, nennt man die Kurve algebraisch.
Funktionsgraphen
Hauptartikel: Funktionsgraph
Funktionsgraphen sind ein Spezialfall beider oben angegebenen Formen: Der Graph einer Funktion
kann entweder als Parameterdarstellung
oder als Gleichung
angegeben werden.
Wird in der Schulmathematik von Kurvendiskussion gesprochen, so meint man üblicherweise nur diesen Spezialfall.
Differenzierbare Kurven, Krümmung
Sei ein Intervall und eine reguläre Kurve, d.h. für alle . Die Länge der Kurve ist
Die Funktion
ist ein Diffeomorphismus , und die Verkettung von c mit dem inversen Diffeomorphismus liefert eine neue Kurve mit für alle . Man sagt: ist nach der Bogenlänge parametrisiert.
Sei ein Intervall und eine nach der Bogenlänge parametrisierte Kurve. Die Krümmung von c an der Stelle s ist definiert als κ(s) = | c''(s) | . Für ebene Kurven kann man die Krümmung noch mit einem Vorzeichen versehen: Ist J die Drehung um 90°, dann ist κ(s) festgelegt durch . Positive Krümmung entspricht Linkskurven, negative Rechtskurven.
Geschlossene Kurven
Sei eine ebene Kurve. Sie heißt geschlossen, wenn c(0) = c(1), und einfach geschlossen, wenn zusätzlich c auf [0,1) injektiv ist. Der Jordansche Kurvensatz besagt, dass eine einfach geschlossene Kurve die Ebene in einen beschränkten und einen unbeschränkten Teil zerlegt. Ist c eine geschlossene Kurve mit für alle , kann man der Kurve eine Windungszahl zuordnen, die angibt, wie oft die Kurve um den Nullpunkt herumläuft.
Glatten geschlossenen Kurven kann man eine weitere Zahl zuordnen, die Umlaufzahl, die für eine nach der Bogenläge parametrisierte Kurve durch
gegeben ist. Der Umlaufsatz von Heinz Hopf besagt, dass eine einfache geschlossene Kurve Umlaufzahl 1 oder − 1 hat.
Sei allgemein X ein topologischer Raum. Statt von geschlossenen Wegen mit c(0) = c(1) spricht man auch von Schleifen mit Basispunkt c(0). Weil der Quotientenraum [0,1] / {0,1} homöomorph zum Einheitskreis S1 ist, identifiziert man Schleifen mit stetigen Abbildungen . Zwei Schleifen c1,c2 mit Basispunkt x heißen homotop, wenn man sie unter Beibehaltung des Basispunkts stetig ineinander deformieren kann, d.h. wenn es eine stetige Abbildung mit H(s,0) = c1(s), H(s,1) = c2(s) für alle s und H(0,t) = H(1,t) = x für alle t gilt. Die Äquivalenzklassen homotoper Schleifen bilden eine Gruppe, die Fundamentalgruppe von X. Ist , dann ist die Fundamentalgruppe über die Windungszahl isomorph zu .
Raumkurven
Sei ein Intervall und eine nach der Bogenlänge parametrisierte Kurve. Die folgenden Bezeichnungen sind Standard:
(definiert, wann immer ). t(s) ist der Tangentialvektor, n(s) der Normalenvektor und b(s) der Binormalenvektor, das Tripel (t,n,b) heißt begleitendes Dreibein, die von t und n aufgespannte Ebene mit Stützpunkt c(s) Oskulationsebene. Die Krümmung ist κ(s) = | t'(s) | = | c''(s) | , die Windung τ(s) definiert durch b'(s) = − τ(s)n(s). Es gelten die Frenetschen Formeln:
Der Hauptsatz der Raumkurventheorie besagt, dass man eine Kurve aus Krümmung und Windung rekonstruieren kann: Sind glatte Funktionen mit κ(s) > 0 für alle (der Wert 0 ist für κ also nicht erlaubt), so gibt es bis auf Bewegungen genau eine entsprechende Kurve.
Kurven als eigenständige Objekte
Kurven ohne umgebenden Raum sind in der Differentialgeometrie relativ uninteressant, weil jede eindimensionale Mannigfaltigkeit diffeomorph zur reellen Geraden oder zur Einheitskreislinie S1 ist. Auch Eigenschaften wie die Krümmung einer Kurve sind intrinsisch nicht feststellbar.
In der algebraischen Geometrie und damit zusammenhängend in der komplexen Analysis sind Kurven jedoch eigenständige Studienobjekte, das prominenteste Beispiel sind die elliptischen Kurven. Siehe Kurve (algebraische Geometrie)
Literatur
- Ethan D. Bloch, A First Course in Geometric Topology and Differential Geometry, Birkhäuser Boston 1997
- Wilhelm Klingenberg, A Course in Differential Geometry, Springer New York 1978
Weblinks
Commons: Kurven – Sammlung von Bildern, Videos und AudiodateienWiktionary: Kurve – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen- Mapping the Landscape of Mathematics. Hall of Fame für geometrische Figuren
Kategorie:- Geometrische Kurve
Wikimedia Foundation.