Tabelle von Ableitungs- und Stammfunktionen

Tabelle von Ableitungs- und Stammfunktionen
\sqrt[n]{x} Dieser Artikel ist eine Formelsammlung zum Thema Ableitungs- und Stammfunktionen. Es werden mathematische Symbole verwendet, die im Artikel Mathematische Symbole erläutert werden.

Diese Tabelle von Ableitungs- und Stammfunktionen (Integraltafel) gibt eine Übersicht über Ableitungsfunktionen und Stammfunktionen, die in der Differential- und Integralrechnung benötigt werden.

Inhaltsverzeichnis

Tabelle einfacher Ableitungs- und Stammfunktionen (Grundintegrale)

Diese Tabelle ist zweispaltig aufgebaut. In der linken Spalte steht eine Funktion, in der rechten Spalte ihre Stammfunktion. (Umgekehrt ist die Funktion in der linken Spalte immer auch die Ableitung ihrer Stammfunktion.)

Hinweis: Wenn F(x) eine Stammfunktion von f(x) ist, dann werden durch F(x) + C mit C als einer beliebigen reellen Konstanten alle Stammfunktionen von f(x) beschrieben. Zum Beispiel ist auch F(x)=\tfrac12 x^2+5 eine Stammfunktion von f(x) = x. Die additive Konstante C wird aus Gründen der Übersichtlichkeit nicht aufgeführt. Weiterhin gilt: Falls F(x) eine Stammfunktion von f(x) ist, so ist aufgrund der Linearität des Integrals a\cdot F(x) eine Stammfunktion von a\cdot f(x).

Potenz- und Wurzelfunktionen

Funktion f(x) Stammfunktion F(x)
0\; 0\;
k\;(k\in\R) kx\;
x^n\; \left\{\begin{matrix} \frac{1}{n+1}x^{n+1} & \mbox{wenn }n\neq-1 \\ \ln \left| x \right| & \mbox{wenn } n=-1 \end{matrix}\right.
f'(x)\cdot f^n(x)\; \frac1{n+1}f^{n+1}(x)\;
nx^{n-1} \; x^n\;
x\; \tfrac12 x^2\;
2x\; x^2\;
x^2\; \tfrac13 x^3\;
\sqrt x\; \tfrac23 x^\tfrac32\;
\sqrt[n]{x}\; \frac{n}{n+1}(\sqrt[n]{x})^{n+1}\;
3x^2\; x^3\;
\frac1{\sqrt{x}}\; 2\sqrt{x}\;
\frac{1}{n (\sqrt[n]{x})^{n-1}}\; \sqrt[n]{x}\;
-\frac{2}{x^3}\; \frac{1}{x^2}\;
-\frac{1}{x^2}\; \frac{1}{x}\;

Exponential- und Logarithmusfunktionen

Funktion f(x) Stammfunktion F(x)
e^x\; e^x\;
e^{kx}\; \frac{1}{k}e^{kx}\;
a^x\ln a\;(a>0) a^x\;
a^x\; \frac{a^x}{\ln a}\;
x^x(1+\ln(x))\; x^x\; (x >0)\;
e^{x \ln \left| x \right|}(\ln \left| x \right| + 1)\; \left| x \right|^x =  e^{x \ln \left| x \right|}
(x\neq 0)
\frac{1}{x}\; \ln \left| x \right| \;
\ln x\; x\ln x -x\;
u'(x) \ln u(x)\; u(x) \ln u(x) - u(x)\;
\frac{1}{x}\ln^{n}x \;\;(n\neq-1)\; \frac{1}{n+1}\ln^{n+1}x\;
\frac{1}{x}\ln{x^n} \;\; (n\neq0)\; \frac{1}{2n}\ln^2{x^n} = \frac{n}2\ln^2 x\;
\frac{1}{x}\frac{1}{\ln a}\; \log_a x\;
\frac{1}{x\ln x}\; \ln\left| \ln x \right| \;  (x > 0, x \ne 1)\;
\log_a x\; \frac{1}{\ln a}(x\ln x -x)\;
\sqrt{a^2 - x^2} \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \left(\frac{x}{a} \right)
\sqrt{a^2 + x^2} \frac{x}{2}\sqrt{a^2 + x^2} + \frac{a^2}{2} \ln \left(x + \sqrt{a^2 + x^2} \right)

Trigonometrische und Hyperbelfunktionen

Funktion f(x) Stammfunktion F(x)
 \sin x\; -\cos x\;
 \cos x\; \sin x\;
 \sin^2 x\; \tfrac12 (x-\sin x\cdot\cos x)\;
\cos^2 x\; \tfrac12 (x+\sin x\cdot\cos x)\;
\sin ax\cos ax\;  -\frac{1}{2a}\cos^2 ax \,\!
 \tan x\; -\ln|\cos x|\;
\cot x\; \ln|\sin x|\;
\frac{1}{\cos^2 x}=1+\tan^2 x\; \tan x\;
\frac{-1}{\sin^2 x}=-(1+\cot^2 x)\; \cot x\;
\arcsin x\; x\arcsin x +\sqrt {1-x^2}\;
\arccos x\; x\arccos x -\sqrt {1-x^2}\;
\arctan x\; x \arctan x -\tfrac12 \ln \left(1+x^2 \right)\;
\frac{1}{\sqrt{1-x^2}}\; \arcsin x\;
\frac{-1}{\sqrt{1-x^2}}\; \arccos x\;
\frac {1} {x^2+1}\; \arctan x\;
\frac {x^2} {x^2+1}\; x - \arctan x\;
\frac {1} {(x^2+1)^2}\; \frac{1}{2}\left(\frac{x}{x^2+1}+\arctan x\right)\;
\sinh x\; \cosh x\;
\cosh x\; \sinh x\;
\tanh x\; \ln \cosh x\;
\coth x\; \ln|\sinh x|\;
\frac{1}{\cosh^2 x} =1-\tanh^2 x\; \tanh x\;
\frac{-1}{\sinh^2 x} =1-\coth^2 x\; \coth x\;
\operatorname{arsinh}\;x\; x\;\operatorname{arsinh}\;x -\sqrt{x^2+1}\;
\operatorname{arcosh}\;x\; x\;\operatorname{arcosh}\;x -\sqrt{x^2-1}\;
\operatorname{artanh}\;x\; x\;\operatorname{artanh}\;x +\frac{1}{2}\ln{\left(1-x^2\right)}\;
\operatorname{arcoth}\;x\; x\;\operatorname{arcoth}\;x +\frac{1}{2}\ln{\left(x^2-1\right)}\;
\frac{1}{\sqrt {x^2+1}}\; \operatorname{arsinh}\;x\;
\frac{1}{\sqrt {x^2-1}}\;,\;x>1 \operatorname{arcosh}\;x\;
\frac{1}{1-x^2}\;,\;\left| x \right|<1 \operatorname{artanh}\;x\;
\frac{1}{1-x^2}\;,\;\left| x \right|>1 \operatorname{arcoth}\;x\;
\sin^{2} k x\; \frac{x}2 - \frac{\sin(2 k x)}{4k}
\cos^{2} k x\; \frac{x}2 + \frac{\sin(2 k x)}{4k}

Sonstige

Funktion f(x) Stammfunktion F(x)
e^{-x^2} \frac{\sqrt{\pi}}{2}\;\operatorname{Erf}\;x
e^{-a x^2 + b x + c} \frac{\sqrt{\pi}}{2 \sqrt{a}}\;e^{\frac{b^2}{4 a} + c}\;\operatorname{Erf}\;\left(\sqrt{a}\;x - \frac{b}{2 \sqrt{a}}\right)
\frac {u'(x)} {u(x)} \ln \left| u(x) \right| \,
 u'(x) \cdot u(x)  \tfrac12 (u(x))^2

Rekursionsformeln für weitere Stammfunktionen

\int\frac{1}{(x^2+1)^n}\, \mathrm d x =
 \frac{1}{2n-2}\cdot\frac{x}{(x^2+1)^{n-1}}
 + \frac{2n-3}{2n-2} \cdot \int\frac{1}{(x^2+1)^{n-1}}\, \mathrm d x,\quad n\geq 2
\int\sin^n(x)d x =
\frac{n-1}{n}\int\sin^{n-2}(x)dx -\frac{1}{n}\cos(x)\sin^{n-1}(x),\quad n\geq 2
\int\cos^n(x)d x =
\frac{n-1}{n}\int\cos^{n-2}(x)dx +\frac{1}{n}\sin(x)\cos^{n-1}(x),\quad n\geq 2

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Ableitungs- und Stammfunktionen — Diese Tabelle von Ableitungs und Stammfunktionen (Integraltafel) gibt eine Übersicht über Ableitungsfunktionen und Stammfunktionen, die in der Differential und Integralrechnung benötigt werden. Inhaltsverzeichnis 1 Tabelle einfacher Ableitungs… …   Deutsch Wikipedia

  • Stammfunktionen — Als Stammfunktion oder unbestimmtes Integral einer reellen Funktion f bezeichnet man eine differenzierbare Funktion F, deren Ableitungsfunktion F mit f übereinstimmt. Ist also f auf einem Intervall I definiert, so muss F auf I definiert und… …   Deutsch Wikipedia

  • Bestimmtes Integral — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der …   Deutsch Wikipedia

  • Dreifachintegral — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der …   Deutsch Wikipedia

  • Hüllenintegral — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der …   Deutsch Wikipedia

  • Integrand — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der …   Deutsch Wikipedia

  • Integrationsbereich — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der …   Deutsch Wikipedia

  • Integrationsvariable — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der …   Deutsch Wikipedia

  • Integrator (Mathematik) — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der …   Deutsch Wikipedia

  • Integrierbar — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”