Transzendente Erweiterung

Transzendente Erweiterung

In der Algebra heißt eine Körpererweiterung \mathbb{L}/\mathbb{K} algebraisch, wenn jedes Element von \mathbb{L} algebraisch über \mathbb{K} ist, d.h. wenn jedes Element von \mathbb{L} Nullstelle eines Polynoms mit Koeffizienten in \mathbb{K} ist. Körpererweiterungen, die nicht algebraisch sind, also transzendente Elemente enthalten, heißen transzendent.

Zum Beispiel sind die Erweiterungen \mathbb{C}/\mathbb{R} und \mathbb{Q}(\sqrt{2})/\mathbb{Q} algebraisch, während \mathbb{R}/\mathbb{Q} transzendent ist.

Ist \mathbb{L} ein Oberkörper von \mathbb{K}, dann kann man \mathbb{L} als \mathbb{K}-Vektorraum auffassen und seine Dimension bestimmen. Diese Vektorraumdimension wird Grad der Körpererweiterung genannt. Je nachdem, ob dieser Grad endlich oder unendlich ist, teilt man Körpererweiterungen in endliche Erweiterungen und unendliche Erweiterungen ein. Jede transzendente Erweiterung ist unendlich; daraus folgt, dass jede endliche Erweiterung algebraisch ist.

Es gibt aber auch unendliche algebraische Erweiterungen, zum Beispiel bilden die algebraischen Zahlen eine unendliche Erweiterung von \mathbb{Q}.

Ist a algebraisch über \mathbb{K}, dann ist der Ring \mathbb{K}[a] aller Polynome in a über \mathbb{K} sogar ein Körper. \mathbb{K}[a] ist eine endliche algebraische Erweiterung von \mathbb{K}, . Solche Erweiterungen, die durch Adjunktion eines einzigen Elements entstehen, heißen einfache Erweiterungen.

Ein Körper, der keine echte algebraische Erweiterung besitzt, ist algebraisch abgeschlossen.


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Galois-Erweiterung — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Algebraische Erweiterung — In der Algebra heißt eine Körpererweiterung algebraisch, wenn jedes Element von algebraisch über ist, d.h. wenn jedes Element von Nullstelle eines Polynoms mit Koeffizienten in ist. Körpererweiterungen, die nicht algebraisch sind, also… …   Deutsch Wikipedia

  • Endliche Galoiserweiterung — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Erweiterungskörper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Galoissch — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Körpererweiterung (Mathematik) — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Perfekter Körper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Zerfällungskörper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Zwischenkörper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Körpererweiterung — In der abstrakten Algebra ist ein Unterkörper K eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”