Dimension (Mathematik)

Dimension (Mathematik)

In der Mathematik wird mit der Dimension ein Konzept bezeichnet, das im Wesentlichen die Anzahl der Freiheitsgrade einer Bewegung in einem bestimmten Raum bezeichnet.

Der Begriff der Dimension tritt in einer Vielzahl von Zusammenhängen auf. Kein einzelnes mathematisches Konzept vermag es, die Dimension für alle Situationen zufriedenstellend zu definieren, darum existieren für verschiedene Räume auch unterschiedliche Dimensionsbegriffe.

Inhaltsverzeichnis

Hamel-Dimension

Am bekanntesten ist die Dimension eines Vektorraums, auch Hamel-Dimension genannt. Sie ist gleich der Mächtigkeit einer Basis des Vektorraumes. Folgende Aussagen sind hierzu äquivalent:

  • Die Dimension ist gleich der Mächtigkeit eines minimalen Erzeugendensystems.
  • Die Dimension ist gleich der Mächtigkeit eines maximalen Systems linear unabhängiger Vektoren.

Beispielsweise besitzt der geometrisch anschauliche Euklidische 3-Raum die Dimension 3 (Länge, Breite, Höhe). Das entspricht dem Raum, in dem wir uns selbst bewegen und ist die höchste Dimension, die wir uns noch anschaulich vorstellen können. Die Euklidische Ebene hat die Dimension 2, die Zahlengerade die Dimension 1, der Punkt die Dimension 0.

Vektorräumen, die kein endliches Erzeugendensystem besitzen, kann man ebenfalls die Mächtigkeit eines minimalen Erzeugendensystems als Dimension zuordnen; es handelt sich dabei dann um eine unendliche Kardinalzahl.

Das Wort „Hamel-Basis“ wird vor allem für unendlichdimensionale Vektorräume verwendet, weil Georg Hamel als erster (mit Hilfe des Zornschen Lemmas, also des Auswahlaxioms) die Existenz einer Basis auch in diesem Fall bewiesen hat.

Schauder-Dimension

Entsprechend kann man die Mächtigkeit einer Schauderbasis eines topologischen Vektorraums (insbesondere eines Hilbertraums) auch als Dimension bezeichnen.

Mannigfaltigkeiten

Daneben ist die Dimension einer Mannigfaltigkeit ebenfalls anschaulich einsichtig. Per Definition hat jeder Punkt einer Mannigfaltigkeit eine Umgebung, die homöomorph zum n-dimensionalen Euklidischen Raum ist; dieses n heißt Dimension der Mannigfaltigkeit. Um zu verhindern, dass die Dimension von der Wahl des Punktes abhängt, wird der Dimensionsbegriff üblicherweise nur für zusammenhängende Mannigfaltigkeiten verwendet.

Bekannte zweidimensionale Mannigfaltigkeiten sind die Oberfläche einer Kugel oder das Möbiusband.

Kettenlänge als Dimension (topologische Dimension)

Die Dimension eines Vektorraums ist gleich der maximalen Länge (Anzahl von Inklusionen) einer Kette von ineinander enthaltenen Unterräumen. Die Sichtweise der Dimension als Kettenlänge lässt eine Verallgemeinerung auf andere Strukturen zu.

So ist etwa die Krulldimension eines kommutativen Rings als maximale Länge einer Kette von ineinander enthaltenen Primidealen definiert.

Ebenso ist die Dimension einer Mannigfaltigkeit die maximale Länge einer Kette von ineinander enthaltenen Mannigfaltigkeiten, bei der jedes Glied der Kette Rand einer Teilmenge des vorigen ist. Zum Beispiel ist der Rand der Erdkugel die Erdoberfläche; Rand von deren Teilmenge Deutschland ist die Staatsgrenze; Rand eines bestimmten Grenzabschnitts sind die beiden Endpunkte – da es keine längere Kette gibt, hat die Erdkugel Dimension 3. Da Inklusion und Randbildung immer definiert sind, liefert dies einen Dimensionsbegriff für jeden topologischen Raum (sog. induktive Dimension). Ein weiterer topologischer Dimensionsbegriff ist die Lebesgue’sche Überdeckungsdimension.

Hausdorff-Dimension

Hauptartikel: Hausdorff-Dimension

Neben den bislang angegebenen ganzzahligen Dimensionen kennt man auch verallgemeinerte, rational- oder reellzahlige Dimensionsbegriffe, mit deren Hilfe sogenannte Fraktale verglichen werden können.

Siehe auch

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Dimension — steht für: die in einem Größensystem festgelegte Dimension einer physikalischen Größe, siehe Dimension (Größensystem) die Anzahl der Freiheitsgrade in einem bestimmten mathematischen Raum im Allgemeinen, siehe Dimension (Mathematik) die Anzahl… …   Deutsch Wikipedia

  • Dimension (Vektorraum) — In der Mathematik wird mit der Dimension ein Konzept bezeichnet, das im Wesentlichen die Anzahl der Freiheitsgrade einer Bewegung in einem bestimmten Raum bezeichnet. Inhaltsverzeichnis 1 Definitionen 1.1 Hamel Dimension 1.2 Schauder Dimension …   Deutsch Wikipedia

  • Physikalische Dimension — Dimension steht für: die in einem Größensystem festgelegte Dimension einer physikalischen Größe, siehe Dimension (Größensystem) die Anzahl der Freiheitsgrade in einem bestimmten mathematischen Raum, siehe allgemein Dimension (Mathematik) oder für …   Deutsch Wikipedia

  • Dimension — Magnitude (fachsprachlich); Ausmaß; Größe; Größenordnung; Format; Liga (umgangssprachlich); Ausdehnung; Abmessung; Aspekt; latente Größe ( …   Universal-Lexikon

  • Hausdorff-Besikowitsch-Dimension — Die Hausdorff Dimension wurde von Felix Hausdorff eingeführt und bietet die Möglichkeit, beliebigen metrischen Räumen, wie beispielsweise Fraktalen, eine Dimension zuzuordnen. Für einfache geometrische Objekte wie Strecken, Vielecke, Quader und… …   Deutsch Wikipedia

  • Hausdorff-Besikowitsch Dimension — Die Hausdorff Dimension wurde von Felix Hausdorff eingeführt und bietet die Möglichkeit, beliebigen metrischen Räumen, wie beispielsweise Fraktalen, eine Dimension zuzuordnen. Für einfache geometrische Objekte wie Strecken, Vielecke, Quader und… …   Deutsch Wikipedia

  • 4. Dimension — 4D oder 4 D (letzteres ist laut Duden die einzige zulässige Form) ist eine verbreitete Abkürzung für vierdimensional als Angabe einer geometrischen Dimension. Im Gegensatz zum 3D Raum unserer Vorstellungswelt (Länge Breite Höhe, oder x y z)… …   Deutsch Wikipedia

  • Vierte Dimension — 4D oder 4 D (letzteres ist laut Duden die einzige zulässige Form) ist eine verbreitete Abkürzung für vierdimensional als Angabe einer geometrischen Dimension. Im Gegensatz zum 3D Raum unserer Vorstellungswelt (Länge Breite Höhe, oder x y z)… …   Deutsch Wikipedia

  • Vektor (Mathematik) — Ein Vektor (lat. vector „jemand, der trägt, zieht oder befördert“; zu lat. vehere = fahren) ist in der Mathematik ein Element eines Vektorraums. Das bedeutet unter anderem, dass sich beliebige zwei Vektoren durch Addition zu einem dritten Vektor… …   Deutsch Wikipedia

  • Komplex (Mathematik) — In der Topologie, einem der Teilgebiete der Mathematik, bezeichnet der Begriff Komplex einen topologischen Raum, der aus einfachen Bestandteilen wie Punkten, Strecken, Dreiecken, Tetraedern etc. zusammengesetzt ist. Dabei werden die Bestandteile… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”