Baudynamik

Baudynamik

Die Baudynamik befasst sich mit der Berechnung und Beurteilung dynamisch belasteter Bauwerke.

Im Gegensatz zur Baustatik wird im Aufgabenbereich der Baudynamik die Dimension der Zeit bzw. der Frequenz berücksichtigt. Dies wird im Bausektor prinzipiell dann erforderlich, wenn zeitlich veränderliche Kräfte auf ein Bauwerk einwirken und das Bauwerk gleichzeitig aufgrund seiner Konstruktion die Möglichkeit bietet, auf diese Einwirkungen zu reagieren (zu schwingen). Die einwirkenden Kräfte können direkt auf ein Bauwerk einwirken (Kraftanregung) oder auch über den Untergrund in ein Bauwerk eingetragen werden (Lastfall der „Fußpunktanregung“).

Inhaltsverzeichnis

Theorie

Neben der in der Statik üblichen Steifigkeitsmatrix wird in der Dynamik eine Massenmatrix für die Berücksichtigung der Trägheitskräfte benötigt. Weiterhin ist in der Regel die Systemdämpfung zu berücksichtigen. Dies kann auf unterschiedliche Art und Weise erfolgen. Klassisch ist die Berücksichtigung mittels einer Dämpfungsmatrix (viskose Charakteristik, das heißt proportional zur Schwingschnelle). Eine Materialdämpfung (= innere Dämpfung aufgrund kleiner Reibvorgänge) kann in komplexer Form berücksichtigt werden, wobei der „Verlustfaktor“ dem statischen Steifigkeitsmodul des betrachteten Materials zugeschlagen wird (sogenannte hysteretische Dämpfung).

Durch die Massen- und Dämpfungsmatrix wird aus einem (linearen) Gleichungssystem ein (lineares) Differentialgleichungssystem.

Lösungsstrategien

Folgende Lösungsmöglichkeiten stehen zur Verfügung:

  • Lösung im Frequenzbereich (in Abhängigkeit von der Zeit)
  • Lösung im Zeitbereich (Zeitschritt-Integration)
  • Modalanalyse (Ermittlung Eigenfrequenzen, Eigenformen)

Für die Auswahl des Lösungsweges ist es wichtig, die auftretende Belastung näher zu kennen. Dynamische Lasten lassen sich allgemein gliedern in:

  • Harmonische Lasten
  • Transiente Lasten (zeitlich veränderlich, z. B. auf- und abklingend)
  • Impulsanregung

Weiterhin kann die Periodizität einer Last bei der Problemlösung behilflich sein. Dasselbe gilt für rein zufällig verteilte Lasten (Rauschen).

Rechnerische Hilfsmittel / Methoden

Weitverbreitet ist die Lösung baudynamischer Probleme mittels Finite-Elemente-Methode / -Berechnung (FEM). Diese Methode stößt jedoch an vielerlei Grenzen:

  • Wellenabstrahlung im Halbraum
bedingt entweder sehr große Rechenmodelle, bis die ins Unendliche abgestrahlte Welle abgeklungen ist; ansonsten ergeben sich Reflexionen, die das Ergebnis beeinträchtigen

oder geeignete Elemente, die die Energieabstrahlung ins Unendliche abbilden können.

  • Die Kenntnis allein von Eigenfrequenzen kann lediglich kritische Frequenzbereiche offenlegen. Eine komplette Systemberechnung setzt allerdings genaue Kenntnisse über die Dämpfungs-Charakteristiken, Dämpfungsgrößen und die Anregungs-Charakteristik voraus.
  • Möglichkeiten zur Parametervariation und Ergebnisaufbereitung sind bislang zumeist stark eingeschränkt.
Für kurzfristige Problemlösungen sind in der Regel sogenannte Ersatzmodelle (simple models) sehr viel geeigneter. Sie erfordern jedoch vom Anwender (= Ersteller einer Modellierung) fundierte baudynamische Kenntnisse.

Zum Einsatz kommen unter anderem

  • Mehrkörpersimulationen
  • Kontinuierliche Systeme
  • Implizierte FE-Ansätze
  • Kommerzielle FE-Modelle als Substruktur
  • Transformierte Modellierungen für Kontinua (z. B. Boden: Modell für Halbraum, geschichteten Halbraum etc.)
  • Semiempirische Modelle; im Allgemeinen über Messdaten anzupassen (siehe unten)

Vorteile dieser Rechenmodelle sind die extrem kurzen Rechenzeiten, die rasche Variantenanalysen ermöglichen und die Ergebnisabhängigkeit von den (unscharfen) Eingangswerten zeigen.

Aufgabenbereiche in der Praxis

Allgemein:

In Deutschland:

  • Bahnerschütterungen
  • Erschütterungen aus Baubetrieb (z. B. Spundbohlen-Einrütteln)
  • Industrielle Erschütterungen (KFZ- und Schwerindustrie)
  • Ausführung extrem immissionsempfindlicher Anlagen (z. B. Rasterelektronenmikroskop)
  • Lagerung emittierender Maschinen (Schwingfundament, z. B. Elastische Lagerung von Pressen oder Mühlen)
  • Sekundärluftschallproblematik (Schallabstrahlung schwingender Strukturen, z. B. Eisenbahnbrücke)

In der Praxis muss der Baudynamiker neben den oben genannten rechnerischen Lösungsstrategien sich auf dem Gebiet der Schwingungsmessungen auskennen. Dynamische Messungen sind für die Erhebung von Eingangsdaten und für das Systemverständnis unerlässlich.

Literatur

  • Helmut Kramer: Angewandte Baudynamik. Grundlagen und Beispiele für Studium und Praxis. Ernst & Sohn, Berlin 2007, ISBN 978-3-433-01823-1.
  • Lothar Stempniewski, Björn Haag: Baudynamik-Praxis. Bauwerk Verlag, Berlin 2010, ISBN 978-3-89932-264-4.

Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Müller-BBM — Rechtsform GmbH Gründung 1962 Sitz Planegg, Deutschland Mitarbeiter > 300 Branche Dienstleistung Website …   Deutsch Wikipedia

  • Bauingenieur — Das Bauingenieurwesen ist eine Ingenieurwissenschaft, die sich mit der Konzeption, Planung, Berechnung, Herstellung und dem Betrieb von Bauwerken des Hoch , Tief und Wasserbaus auseinandersetzt. In diesem Zusammenhang werden ebenfalls Fragen des… …   Deutsch Wikipedia

  • Baustatiker — Fehler des Statikers, Problemlösung aus Holz Baustatik oder die Statik der Baukonstruktionen ist die Lehre von der Stabilität von Tragwerken im Bauwesen. Die Berechnungsverfahren der Baustatik sind Hilfsmittel der Tragwerksplanung und mit der… …   Deutsch Wikipedia

  • Dynamik (Physik) — Die Dynamik (gr. dynamis Kraft) ist das Teilgebiet der Mechanik, das sich mit der Wirkung von Kräften befasst. Die Dynamik wird in der Technischen Mechanik weiter untergliedert in die Statik, die sich mit dem Kräftegleichgewicht an… …   Deutsch Wikipedia

  • Erweiterte Technische Biegelehre — Fehler des Statikers, Problemlösung aus Holz Baustatik oder die Statik der Baukonstruktionen ist die Lehre von der Stabilität von Tragwerken im Bauwesen. Die Berechnungsverfahren der Baustatik sind Hilfsmittel der Tragwerksplanung und mit der… …   Deutsch Wikipedia

  • Franz Ziegler (TU Wien) — Franz Ziegler (* 12. Dezember 1937 in Wiener Neustadt) ist emeritierter Universitätsprofessor für Allgemeine Mechanik an der Technischen Universität Wien. Inhaltsverzeichnis 1 Leben und wissenschaftliche Laufbahn 2 Auszeichnungen (Auswahl) 3 …   Deutsch Wikipedia

  • Fritz Peter Müller — (* 20. Dezember 1923 in Ebersbach an der Fils; † 14. Oktober 1981 in Freiburg im Breisgau) war Inhaber des Lehrstuhls für Beton und Stahlbeton an der Universität Karlsruhe (TH). Inhaltsverzeichnis 1 Leben 2 Werke 3 …   Deutsch Wikipedia

  • Grid Computing — Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung. Grid Computing ist eine Form des verteilten Rechnens, bei der ein… …   Deutsch Wikipedia

  • Grid computing — Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung. Grid Computing ist eine Form des verteilten Rechnens, bei der ein… …   Deutsch Wikipedia

  • Gridcomputing — Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung. Grid Computing ist eine Form des verteilten Rechnens, bei der ein… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”