- AMD K10
-
AMD K10 (auch bekannt als „AMD Next Generation Processor Technology“ oder „Stars“) ist der Codename einer Generation von Mikroprozessoren von AMD, die die K8- und K9-Generation ergänzt und mittelfristig ersetzen wird. Die K10-Generation basiert weiterhin auf der bereits seit längerem verwendeten AMD64-Mikroarchitektur.
Die K10-Generation wurde früher irrtümlich als AMD K8L bezeichnet, dies ist aber der Codename einer stromsparenden Variante der K8-Generation.[1][2]
Inhaltsverzeichnis
Technisches
Die K10-Generation ist von Grund auf als Mehrkernprozessor konzipiert.
Auf einem Die wurden bei der Fertigung im 65nm-Prozess bis zu vier Rechenkerne mit ihren dedizierten (d. h. fest zugeordneten) Caches, bis zu zwei Speichercontroller, die Crossbar und ein von allen Kernen gemeinsam genutzter, 2 MiB großer L3-Cache untergebracht.[1][2][3][4]
Mit der Umstellung der Fertigung auf 45nm wurden inzwischen bis zu sechs Kerne realisiert und der L3-Cache ist auf bis zu 6 MB angewachsen. Gleichzeitig gibt es nun aber auch Modelle komplett ohne L3-Cache.
45nm-CPUs mit dem L3-Cache schneiden bei IPC (Instructions per Clock) besser als ihre 65nm-Vorfahren ab, während CPUs ohne L3-Cache im Durchschnitt eine kleinere IPC haben.
Im Vergleich zum K9 musste die Crossbar erweitert werden, um weitere Kerne ansprechen zu können.[4]
Die Speichercontroller mussten an die veränderte Cache-Hierarchie angepasst und optimiert werden.
Durch den gemeinsamen L3-Cache können die Kerne im Normalfall ohne Umweg über den relativ langsamen Hauptspeicher miteinander kommunizieren. Ein Umweg ist bei diesen Prozessoren nur dann nötig, wenn der gemeinsame Cache nicht ausreicht oder die Daten aus anderen Gründen bereits in den Hauptspeicher ausgelagert wurden.
Eine überarbeitete Gleitkommaeinheit[1][4] soll den Gleitkommadurchsatz stark erhöhen. Weiterhin sind erweiterte Stromspartechniken mit getrennten Versorgungsleitungen für die einzelnen Prozessorkerne und den Speichercontroller („split power planes“) sowie eine schnellere HyperTransport-Anbindung (Version 3.0)[1][2] auf neueren Mainboards verfügbar. Ausgereift sind die erweiterten Stromspartechniken allerdings erst bei den 45nm-Modellen, die 65nm-Modelle konnten im Idle im Vergleich zur K9-Generation nicht überzeugen.
Aufgrund der umfangreichen Änderungen an den Prozessorschnittstellen und der Spannungsversorgung wurden für die K10-Generation neue Prozessorsockel eingeführt. Für Mainboards mit einem Prozessor ist dies der Sockel AM2+, beziehungsweise der Sockel AM3 sofern man DDR3 als Arbeitsspeicher verwenden möchte und es sich um eine neuere 45nm-CPU handelt. Allerdings besteht weiterhin die eingeschränkte Möglichkeit, die neue Generation mit reduziertem Funktions- und eventuell Leistungsumfang (z. B. höherer Stromverbrauch[4]) auch in den älteren Prozessorsockeln Sockel AM2 und Sockel F zu nutzen, sofern ein Bios-Update vom Mainboardhersteller bereitgestellt wurde.
Unterschiede zur K8-Architektur
- Erweiterte Instruction Queue
- Die Instruction Queue (Befehlswarteschlange) dient zum vorausschauenden Speichern der Befehle. Statt 16 Byte pro Taktzyklus sind nun 32 Byte pro Taktzyklus möglich.
- Verbesserung der Sprungvorhersage
- Erweiterte Sprungvorhersage (Advanced Branch Prediction) mit nun 512 Einträgen und Verdopplung des Return Stacks.
- Sideband Stack Optimizer
- Dieser ist neu hinzugekommen und führt Stack-Optimierungen bei POP/PUSH-Operationen durch.
- Verbesserung des TLB
- Der Translation Lookaside Buffer (TLB) unterstützt jetzt 1 GiB große Pages. Ein Prozessorkern mit K10-Architektur adressiert den Speicher jetzt mit 48 Bit gegenüber 40 Bit beim K8. Der adressierbare Speicherbereich beträgt jetzt bis zu 128 TiB. Laut AMD soll sich dadurch die Arbeitsgeschwindigkeit bei großen Datenbanken und virtuellen Umgebungen erhöhen.
- Einführung von SSE4a beziehungsweise SSE128
- Pro Taktzyklus und Kern ist das Einlesen von zwei 128-Bit-SSE-Befehlen möglich. Damit sind nun bis zu vier Gleitkomma-Operationen mit doppelter Genauigkeit pro Taktzyklus möglich. Bei der K8-Architektur ist der SSE-Pfad „nur“ 64 Bit breit. Außerdem existieren neue SSE4a-Befehle: EXTRQ, INSERTQ, MOVNTSD, MOVNTSS. Weiterhin werden die SSE-Befehle für Bitmanipulation erweitert: LZCNT, POPCNT.
- Unabhängiger Speicher-Controller
- Durch einen unabhängigen Speicher-Controller sind mehr DRAM-Bänke möglich, es kommt zu weniger Page-Konflikten und es sind größere Burst-Längen möglich. Das Write Bursting soll mehrere Schreib- und Lesezugriffe auf den Speicher bündeln und in einem Durchgang ausführen. Dies soll den effektiven Speicherdurchsatz erhöhen. Im Gegensatz zum K8 und K9 kann der K10 die beiden Speicherkanäle wahlweise auch unabhängig ansteuern („unganged“ Modus). Somit kann die CPU gleichzeitig lesend und schreibend auf den Speicher zugreifen.
- L2-Cache
- Die Datenanbindung zwischen Prozessorkern und L2-Cache wurde von 128 Bit auf 256 Bit erweitert.
- Shared L3-Cache
- Alle Prozessorkerne können auf diesen gemeinsamen Cache zugreifen.
Namensgebung
Die Desktop-Prozessoren der K10-Generation werden unter drei statt bisher zwei Markennamen vertrieben. Die Modelle mit einem L3-Cache werden unter dem neuen Produktnamen Phenom vermarktet, solche ohne L3-Cache als Athlon. Darüber hinaus basiert wie zuletzt schon beim AMD Athlon X2 das Bezeichnungssystem nicht mehr auf dem Quantispeed-Rating, sondern auf einer strukturierten Typennummer, ähnlich dem AMD Opteron.
Die erste Phenom-Serie mit vierstelligen Modellnummern wurde Ende November 2007 vorgestellt (damals noch unter dem Namen AMD Phenom ohne den Zusatz X4). Ende März 2008 folgten dann die Dreikernprozessoren mit den Namen Phenom X3, im Oktober 2008 darauf basierende Athlon-Modelle.
Anfang 2009 wurde der AMD Phenom II und wenig später der AMD Athlon II vorgestellt. Diese tragen dreistellige Modellnummern und sind in einem moderneren Fertigungsprozess hergestellt, wodurch die Stromaufnahme deutlich sinkt und wesentlich höhere Taktraten möglich wurden.
Im Serverbereich wird der erfolgreiche Produktname AMD Opteron beibehalten, erste Produkte mit dem Vierkernprozessor „Barcelona“ wurden am 10. September 2007 auf den Markt gebracht.
Prozessoren der K10-Generation
Folgende Prozessorfamilien von AMD basieren auf der K10-Generation:
- AMD Opteron (K10)
- AMD Phenom II
- AMD Phenom
- AMD Athlon II
- AMD Athlon X2 mit Kuma-Kern
- AMD Turion II
- AMD V-Serie
- AMD Sempron (nur die Ausführungen für Sockel AM3)
Siehe auch
Einzelnachweise
- ↑ a b c d Video-Interview mit Giuseppe Amato (Technischer Direktor von AMD: Verkauf und Marketing EMEA) vom Februar 2007
- ↑ a b c AMD: Im Barcelona steckt K10 (heise.de). April 2007.
- ↑ AMD-Roadmap bis 2008 (computerbase.de
- ↑ a b c d AMDs K10: Dreistufige Cache-Architektur des Barecelona-Cores vorgestellt. April 2007.
Weblinks
Prozessor-Generationen: AMD K5 | AMD K6 | AMD K7 | AMD K8/K8L | AMD K9 | AMD K10
Sonstige AMD-Entwicklungen: AMD64 | AMD LIVE! | AMD Quad FX | AMD-V | QuantiSpeed | Turbo Core
Bis AMD-K6-Generation: Am286 | Am386 | Am486 | 5x86 | K5 | K6 | K6-2 | K6-III
Athlon-Serie: Desktop: Athlon (K7), Athlon XP | Athlon 64, Athlon 64 FX | Athlon 64 X2, Athlon X2 Mobil: Athlon XP-M | Mobile Athlon 64 | Athlon 64 X2 | Athlon X2 Server: Athlon MP
Duron-Serie: Desktop: Duron Mobil: Mobile Duron Sempron-Serie: Desktop: Sempron (K7) | Sempron (K8) Mobil: Mobile Sempron
AMD K10-Serie: Desktop: Athlon X2 | Athlon II | Phenom | Phenom II Mobil: Athlon II X2 | Phenom II
Turion-Serie: Mobil: Turion 64 | Turion 64 X2 | Turion X2 | AMD Turion II
APUs: AMD A-, E-, C- und G-Serie
Opteron-Serie: Server: Opteron (K8) | Opteron (K9) | Opteron (K10)
Sonstige AMD-Prozessoren: Embedded: Geode | Alchemy | AMD Am29000 | AMD Embedded G-Serie
AMD-Chipsätze: 690-Serie | 700-Serie | 800-Serie | 900-Serie
Wikimedia Foundation.