Cauchy-Riemann-Differentialgleichungen

Cauchy-Riemann-Differentialgleichungen

Die Cauchy-Riemann'schen partiellen Differentialgleichungen (nach Augustin Louis Cauchy und Bernhard Riemann) sind ein Begriff aus der Funktionentheorie und ein Kriterium für komplexe Differenzierbarkeit. Die Gleichungen wurden das erste Mal 1814 von Cauchy in seinem Aufsatz Sur les intégrales définies aufgeschrieben.

Bezeichnungen

Sei U \subset \mathbb{C} offen und f:U \rightarrow \mathbb{C} eine komplexwertige Funktion einer komplexen Variablen. In kanonischer Weise kann man eine komplexe Zahl \ z=x+iy mit (x,y) \in \mathbb{R}^2 identifizieren. Sei \tilde{U} := \{(x,y)\in\mathbb{R}^2\ |\ x+iy \in U\} das entsprechende Pendant zu U im \mathbb{R}^2 und \tilde{f} = (\tilde{f}_1, \tilde{f}_2): \tilde{U} \rightarrow \mathbb{R}^2 definiert vermöge

\tilde{f}(x,y) := ({\rm Re}\; f(x+iy),\; {\rm Im}\; f(x+iy))\ .

Die Cauchy-Riemann'schen Differentialgleichungen klären nun den Zusammenhang zwischen der komplexen Differenzierbarkeit von f und der Differenzierbarkeit von \tilde{f} im folgenden Sinne:

Formulierung

Es gelten die Bezeichnungen von oben; insbesondere sei darauf hingewiesen, dass U offen ist. Sei z_0 = x_0 + iy_0 \in U. Dann sind äquivalent:

  • f ist in z0 komplex differenzierbar.
  • Es existieren die partiellen Ableitungen von \tilde{f}_1 und \tilde{f}_2 nach x und y die in (x0,y0) stetig sind, und es gelten die Cauchy-Riemann'schen Differentialgleichungen
\frac{\partial \tilde{f}_1}{\partial x}(x_0, y_0) = \frac{\partial \tilde{f}_2}{\partial y}(x_0, y_0) und \frac{\partial \tilde{f}_1}{\partial y}(x_0, y_0) = -\frac{\partial \tilde{f}_2}{\partial x}(x_0, y_0).

Mit Hilfe der Cauchy-Riemann'schen Differentialgleichungen kann man zeigen, dass \tilde{f}_1 und \tilde{f}_2 harmonische Funktionen sind, sofern f holomorph ist.

Literatur

  • Eberhard Freitag, Rolf Busam: Funktionentheorie 1. 3. Auflage. Springer, 2000, ISBN 3540676414. 

Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Cauchy-Riemannsche Differentialgleichungen — Die Cauchy Riemann schen partiellen Differentialgleichungen (nach Augustin Louis Cauchy und Bernhard Riemann) sind ein Begriff aus der Funktionentheorie und ein Kriterium für komplexe Differenzierbarkeit. Die Gleichungen wurden das erste Mal 1814 …   Deutsch Wikipedia

  • Cauchy-Riemann-Gleichungen — Die Cauchy Riemann schen partiellen Differentialgleichungen (nach Augustin Louis Cauchy und Bernhard Riemann) sind ein Begriff aus der Funktionentheorie und ein Kriterium für komplexe Differenzierbarkeit. Die Gleichungen wurden das erste Mal 1814 …   Deutsch Wikipedia

  • Cauchy-Riemannsche partielle Differentialgleichungen — Die Cauchy Riemannschen partiellen Differentialgleichungen (nach Augustin Louis Cauchy und Bernhard Riemann) sind ein Begriff aus der Funktionentheorie und ein Kriterium für komplexe Differenzierbarkeit. Die Gleichungen wurden das erste Mal 1814… …   Deutsch Wikipedia

  • Augustin Louis Cauchy — [ogysˈtɛ̃ lwi koˈʃi] (* 21. August 1789 in Paris; † 23. Mai 1857 in Sceaux) war ein französischer Ma …   Deutsch Wikipedia

  • Cauchy-Problem — Als Anfangswertproblem (AWP) (manchmal auch als Anfangswertaufgabe (AWA) oder Cauchy Problem genannt) bezeichnet man in der Analysis eine wichtige Klasse von Differentialgleichungen, bei denen aus vorgegebenen Anfangsdaten, nämlich dem… …   Deutsch Wikipedia

  • Bernhard Riemann — 1863 Georg Friedrich Bernhard Riemann (* 17. September 1826 in Breselenz bei Dannenberg (Elbe); † 20. Juli 1866 in Selasca bei Verbania am Lago Maggiore) war ein deutscher Mathematiker, der …   Deutsch Wikipedia

  • Georg Friedrich Bernhard Riemann — Bernhard Riemann Georg Friedrich Bernhard Riemann (* 17. September 1826 in Breselenz bei Dannenberg (Elbe); † 20. Juli 1866 in Selasca bei Verbania am Lago Maggiore) war ein deutscher Mathem …   Deutsch Wikipedia

  • Pseudoholomorphe Kurve — Pseudoholomorphe Kurven (PHK) bezeichnen in der symplektischen Topologie eine glatte Abbildung von einer Riemannfläche in eine fast komplexe Mannigfaltigkeit, die die Cauchy Riemann Differentialgleichungen erfüllt. Sie wurden 1985 durch Mikhail… …   Deutsch Wikipedia

  • Absolutbetrag — Verlauf der Absolutbetragsfunktion auf In der Mathematik ordnet die Betragsfunktion einer reellen oder komplexen Zahl ihren Abstand zur Null zu. Dieser sogenannte absolute Betrag, Absolutwert oder auch schlicht Betrag ist immer eine nichtnegative …   Deutsch Wikipedia

  • Absolute Zahl — Verlauf der Absolutbetragsfunktion auf In der Mathematik ordnet die Betragsfunktion einer reellen oder komplexen Zahl ihren Abstand zur Null zu. Dieser sogenannte absolute Betrag, Absolutwert oder auch schlicht Betrag ist immer eine nichtnegative …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”