Masatake Kuranishi

Masatake Kuranishi

Masatake Kuranishi (jap. 倉西 正武, Kuranishi Masatake; * 19. Juli 1924 in Tokio, Präfektur Tokio) ist ein japanischer Mathematiker, der sich mit komplexer Analysis, partiellen Differentialgleichungen und Differentialgeometrie beschäftigt.

Inhaltsverzeichnis

Leben

Kuranishi wurde 1952 an der Universität Nagoya promoviert. Dort war er seit 1951 Dozent, ab 1952 Assistenzprofessor und ab 1958 Professor. Ab 1956 war er in den USA, wo er zunächst Gastwissenschaftler an der University of Chicago, am Massachusetts Institute of Technology und der Princeton University war. Er war seit 1961 Professor an der Columbia University.

1975 war er Guggenheim Fellow. 2000 erhielt er den Stefan Bergman Preis.

Werk

Von Kuranishi (und Elie Cartan) stammt das Cartan-Kuranishi Theorem über die Fortsetzung Systeme äußerer Differentialformen[1].

1962 konstruierte er aufbauend auf den Arbeiten von Kunihiko Kodaira und Donald Spencer lokal vollständige Deformationen kompakter komplexer Mannigfaltigkeiten.[2]

1982 [3] erzielte er wichtige Fortschritte im Einbettungsproblem von abstrakten CR-Strukturen (Cauchy-Riemann-Strukturen): er bewies die lokale Einbettung für neun und mehr reelle Dimensionen der reellen Hyperfläche unter der Annahme starker Pseudokonvexität. Das wurde von T. Akahori und anderen auf sieben Dimensionen erweitert, der Fall von fünf Dimensionen ist offen[4]

Eine Arbeit Kuranishis von 1948 war ein wichtiger Schritt im Programm der Lösung von Hilberts 5. Problem.[5]

Schriften

  • Heisuke Hironaka (Herausgeber): Masatake Kuranishi - Selected Papers, Springer 2010
  • Kuranishi: Deformations of compact complex manifolds, Montreal, Presses de l'Universite de Montreal, 1971.

Weblinks

Einzelnachweise

  1. On E. Cartan's prolongation theorem of exterior differential systems, Am. J. Math., Band 79, 1957, S. 1-47
  2. On the locally complete families of complex analytic structures, Annals of Math., Band 75, 1962, S.536-577
  3. Strongly pseudo convex CRstructures over small balls, Teil 1, Annals of Mathematics, Band 115, 1982, S. 451-500, Teil 2, Band 116, 1982, S. 1-64, Teil 3, Band 116, 1982, S. 249-330
  4. Die Dimension ergibt sich jeweils aus der Dimension einer Hyperfläche im 2n dimensionalen Raum. Bei drei Dimensionen (n=2) gibt es ein Gegenbeispiel von Louis Nirenberg
  5. So Hidehiko Yamabe in seinem Aufsatz (Annals of Mathematics, Band 58, 1953, S.351), der einer der Schlusssteine zur Lösung des Hilbertproblems war.

Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • List of Guggenheim Fellowships awarded in 1975 — 1975 U.S. and Canadian Fellows= * Edward Ostrander Abbey, Deceased. Fiction: 1975. * Claus Adam, Deceased. Music Composition: 1975 * Ai, Poet; Professor of English, Oklahoma State University: 1975. Appointed as Ogawa, Pelorhankhe Ai L heah. *… …   Wikipedia

  • Hidehiko Yamabe — (jap. 山辺 英彦, Yamabe Hidehiko; * 22. August 1923 in Ashiya, Präfektur Hyōgo; † 20. November 1960 in Evanston, Illinois) war ein japanischer Mathematiker. Inhaltsverzeichnis 1 Leben 2 Werk …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”