Elie Cartan

Elie Cartan

Élie Joseph Cartan (* 9. April 1869 in Dolomieu, Dauphiné; † 6. Mai 1951 in Paris) war ein französischer Mathematiker, der bedeutende Beiträge zur Theorie der Lie-Gruppen und ihrer Anwendungen lieferte. Er leistete darüber hinaus bedeutende Beiträge zur mathematischen Physik und zur Differentialgeometrie.

Inhaltsverzeichnis

Leben

Cartan studierte an der École Normale Supérieure in Paris. Nach seiner Promotion im Jahre 1894 unterrichtete er in Montpellier und Lyon. 1903 wurde er Professor in Nancy. 1909 begann er schließlich, in Paris zu unterrichten, wo er 1912 eine Professur erhielt. Während des Ersten Weltkrieges arbeitete er im Hospital der Ecole Normale Supérieure, war aber weiterhin wissenschaftlich tätig.

1940 setzte er sich zur Ruhe. Sein Sohn Henri Cartan wurde ebenfalls ein bedeutender Mathematiker.

Élie Cartan starb am 6. Mai 1951 in Paris.

Werk

Élie Cartan ist hauptsächlich bekannt für seine Untersuchungen zur Klassifikation halbeinfacher komplexer Liealgebren und seine Beiträge zur Differentialgeometrie. Nach ihm sind viele Konzepte der Theorie der Liealgebren wie Cartan-Unteralgebren, die Cartan-Involution und die Cartan-Matrix benannt. In der Differentialgeometrie tragen die Cartan-Ableitung und Maurer-Cartan-Gleichungen seinen Namen; manchmal werden auch Zusammenhänge auf Prinzipalbündeln (Hauptfaserbündel) als Cartan-Zusammenhänge bezeichnet.

Nach eigenem Bekunden in seinem Werk Notice sur les travaux scientifiques war sein Hauptbeitrag zur Mathematik die Weiterentwicklung der Theorie der Liegruppen und Liealgebren (zuerst in seiner Dissertation 1894). In Fortsetzung der Arbeit von Wilhelm Killing und Friedrich Engel arbeitete er an komplexen einfachen Liealgebren. Hier identifizierte er die 4 Hauptfamilien und die 5 Ausnahmefälle, womit eine vollständige Klassifikation erreicht wurde. Er führte auch das Konzept der algebraischen Gruppe ein, das aber erst nach 1950 ernsthafte Entwicklung erfuhr.

Er definierte die einheitliche Notierung alternierender Differentialformen, wie sie heute noch benutzt werden. Seine Herangehensweise an die Liegruppen mithilfe der Maurer-Cartan-Gleichungen benötigte Gleichungen 2. Ordnung. Zu jener Zeit wurden nur Gleichungen 1. Ordnung (Pfaffsche Form) benutzt. Mit der Einführung der 2. Ordnung für Ableitungen und weiteren Ordnungen wurde die Formulierung vergleichsweise allgemeiner Systeme partieller Differentialgleichungen möglich. Cartan führte die äußere Ableitung als eine vollständig geometrische und koordinaten-unabhängige Operation ein. Diese führt auf natürliche Weise zur dem Bedürfnis, Differentialformen von beliebigem Grad p zu untersuchen. Wie Cartan berichtet, ist er durch die allgemeine Theorie partieller Differentialgleichungen, wie sie von Riquier beschrieben wurde, beeinflusst worden.

Mit diesen Grundlagen – Lie-Gruppen und Differentialgleichungen höherer Ordnung – schuf er ein umfassendes Werk, und führte einige grundlegende Techniken wie zum Beispiel die Rahmenfelder (moving frames) ein, die sich später in den Mainstream mathematischer Methoden integrierten.

In den Travaux unterteilt er seine Arbeit in fünfzehn Teilbereiche. In moderner Terminologie sind diese:

  • Lie-Gruppen
  • Darstellungen von Lie-Gruppen
  • Hyperkomplexe Zahlen, Divisionsalgebra
  • Partielle Differentialgleichungen, Cartan-Kähler-Theorem
  • Äquivalenztheorie
  • Integrierbare Systeme, Theorie der Prolongationen und Involutionssysteme
  • Unendlichdimensionale Gruppen und Pseudogruppen
  • Differentialgeometrie und begleitende Vielbeine (moving frames, repere mobile)
  • Allgemeine Räume mit Stukturgruppe und Zusammenhängen, Cartan-Zusammenhang, Holonomie, Weyl-Tensor
  • Geometrie und Topologie von Liegruppen
  • Riemannsche Geometrie
  • Symmetrische Räume
  • Topologie kompakter Gruppen und ihrer homogenen Räume
  • Integral-Invarianten und klassische Mechanik
  • Allgemeine Relativitätstheorie und Spinoren

Auf vielen dieser Gebiete war er ein Pionier. Die meisten - jedoch nicht alle- Themen, auf denen er relativ isoliert und von den Zeitgenossen unverstanden als erster voranschritt, sind von späteren Mathematikern aufgegriffen und ausgebaut worden.


Schriften

  • Oeuvres completes, 3 Bde., Paris 1952 bis 1955, Nachdruck Edition du CNRS 1984
  • Geometry of Riemannian Spaces, Brookline, Massachusetts, 1983, zuerst La geometrie des espaces de Riemann, Gauthiers-Villars 1925
  • On manifolds with affine connection and the general theory of relativity, Neapel, Bibliopolis 1986
  • The Theory of Spinors, Paris, Hermann 1966
  • Lecons sur la theorie des espaces a connexion projective, Gauthiers-Villars 1937
  • La parallelisme absolu et la theorie unitaire du champ, Hermann 1932
  • La theorie des groups finis et continus et l´analysis situs, Gauthiers-Villars 1930
  • Lecons sur la geometrie projective complexe, Gauthiers-Villars 1931
  • Lecons sur la geometrie des espaces de Riemann, Gauthiers-Villars 1928
  • Lecons sur les invariants integraux, Hermann, Paris, 1922

Literatur

  • M. Akivis, B. Rosenfeld: Elie Cartan. Providence, AMS 1993

Weblinks

Viele Arbeiten von Cartan sind online hier: [1]


Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Élie Cartan — Élie Cartan, né le 9 avril 1869 à Dolomieu et mort le 6 mai 1951 à Paris, est l un des mathématiciens français les plus influents de son époque. Son travail porte sur les applications géométriques des groupes de Lie …   Wikipédia en Français

  • Élie Cartan — Élie Joseph Cartan (* 9. April 1869 in Dolomieu, Dauphiné; † 6. Mai 1951 in Paris) war ein französischer Mathematiker, der bedeutende Beiträge zur Theorie der Lie Gruppen und ihrer Anwendungen lieferte. Er leistete darüber hinaus bedeutende… …   Deutsch Wikipedia

  • Elie Cartan — Élie Cartan Élie Cartan, né le 9 avril 1869 à Dolomieu et mort le 6 mai 1951 à Paris, est l un des mathématiciens français les plus influents de son époque. Son travail porte sur les applications géométriques des groupes de Lie.… …   Wikipédia en Français

  • Élie Cartan — (9 de abril 1869 6 de mayo 1951) fue un matemático Francés, quien hizo trabajos fundamentales en la teoría de grupos de Lie y sus usos geométricos. Nació en Dolomieu en Savoya, y devino estudiante de la École Normale en París en 1888. Después de… …   Enciclopedia Universal

  • Élie Cartan — Infobox Person name = Élie Joseph Cartan image size = 200px caption = Professor Élie Joseph Cartan birth date = birth date|1869|4|9 birth place = Dolomieu, Savoie, France death date = death date and age|1951|5|6|1869|4|9 death place = Paris,… …   Wikipedia

  • Élie Cartan — Élie Joseph Cartan (Dolomieu, Saboya, 9 de abril 1869 París, 6 de mayo 1951) fue un matemático francés, que llevó a cabo trabajos fundamentales en la teoría de grupos de Lie y sus usos geométricos. Contenido 1 Biografía 2 Labor matemática …   Wikipedia Español

  • Institut Élie Cartan de Nancy — Le bâtiment accueillant l IECN sur 2 500 m2, au cœur du campus de la faculté des sciences et techniques à Vandœuvre lès Nancy. L Institut Élie Cartan de Nancy (IECN) est un institut de recherche en mathématiques appartement à l… …   Wikipédia en Français

  • Elie Joseph Cartan — Élie Joseph Cartan (* 9. April 1869 in Dolomieu, Dauphiné; † 6. Mai 1951 in Paris) war ein französischer Mathematiker, der bedeutende Beiträge zur Theorie der Lie Gruppen und ihrer Anwendungen lieferte. Er leistete darüber hinaus bedeutende… …   Deutsch Wikipedia

  • Élie Joseph Cartan — (* 9. April 1869 in Dolomieu, Dauphiné; † 6. Mai 1951 in Paris) war ein französischer Mathematiker, der bedeutende Beiträge zur Theorie der Lie Gruppen und ihrer Anwendungen lieferte. Er leistete darüber hinaus bedeutende Beiträge zur… …   Deutsch Wikipedia

  • CARTAN (É.) — Élie Cartan fut l’un des plus grands mathématiciens de son époque. Il possédait une intuition géométrique remarquable, aidée par une très grande aptitude à dominer les calculs les plus complexes. Il fut également un excellent professeur. Son… …   Encyclopédie Universelle

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”