Methode der kleinen Schritte

Methode der kleinen Schritte

Die Methode der kleinen Schritte ist eine physikalische Anwendung des eulerschen Polygonzugverfahrens, die zur näherungsweisen mathematischen Beschreibung von Bewegungen dient.

Wenn beispielsweise die wirkende Kraft nicht konstant ist, so ist mit einfacher Mathematik keine Auswertung des ersten newtonschen Gesetzes möglich, da die Beschleunigung nicht konstant ist. Auf einfachstem Niveau wird die Beschleunigung jeweils für ein Zeitintervall Δt als konstant angenommen, daraus die resultierende Geschwindigkeit und der Ort am Ende des Zeitabschnittes bestimmt und mit der nun wirkenden Kraft der nächste Berechnungsschritt im nächsten Zeitintervall Δt vorgenommen.

Inhaltsverzeichnis

Anwendungsbeispiel: Erdnaher freier Fall

Man wendet die Methode der kleinen Schritte beispielsweise bei der Bewegung im freien Fall an.

Physikalischer Hintergrund

Auf der Erdoberfläche schwankt der Betrag der Fallbeschleunigung wegen der Erdabplattung und der Erdrotation in Meereshöhe zwischen ca. 9,78 m/s² (Äquator) und 9,83 m/s² (Pole). Zusätzlich ist sie von der Höhe über Normal-Null abhängig (siehe auch Ortsfaktor). Die „Normal-Fallbeschleunigung“ legt DIN 1305 als g = 9,80665 m/s² fest. Der Wert für die Erdschwerebeschleunigung wird allgemein mit g = 9,81 m/s² angegeben.

  • Beim freien Fall in Erdnähe würde die Geschwindigkeit v eines fallenden Körpers - bei Vernachlässigung des Luftwiderstandes - um 9,81 m/s pro Sekunde steigen. Dann wäre der freie Fall eine gleichmäßig beschleunigte Bewegung. Ein Fallschirmspringer, der sich aus einem stationären Ballon fallen lässt, wird zunächst immer schneller, seine Geschwindigkeit nimmt stetig zu. Seine Beschleunigung entspricht dabei der Erdschwerebeschleunigung und ist größer als die eines Autos: Nach einer Sekunde hat er theoretisch eine Geschwindigkeit von v = 9,81 m/s (ca. 35 km/h), nach zwei Sekunden 19,62 m/s (ca. 71 km/h), nach drei Sekunden 29,43 m/s (ca. 106 km/h). In einem echten freien Fall, d.h. im Vakuum, würde die Geschwindigkeit linear weiter entsprechend ansteigen.
  • Tatsächlich wirkt auf den Fallschirmspringer jedoch auch der Luftwiderstand, welcher quadratisch mit der Geschwindigkeit zunimmt. Die resultierende Beschleunigung entspricht daher nur am Anfang der Erdschwerebeschleunigung, nachher nimmt sie ab, bis nach ca. 7 Sekunden die Beschleunigung Null wird - der Fallschirmspringer fällt nun mit der Fallgrenzgeschwindigkeit des menschlichen Körpers von ca. 55 m/s (ca. 198 km/h). Diese Geschwindigkeit ist allerdings nicht die maximale Geschwindigkeit, sondern diejenige, die bei Einnahme der stabilen quer zum Fall ausgerichteten Lage mit gespreizten Armen und Beinen erreicht wird. In einer geraden, senkrechten Haltung mit dem Kopf voran ist der Luftwiderstand deutlich geringer und es werden Geschwindigkeiten knapp über 500 km/h erreicht.

Anwendung einer Tabellenkalkulation

Mit Hilfe einer Tabellenkalkulation kann man derartige Probleme aber in viele einfache und vor allem lösbare Teilaufgaben zerlegen, deren Ergebnisse man durch das Computerprogramm zur Gesamtlösung zusammensetzen lässt. Die Vorteile liegen auf der Hand:

  • Man benötigt keine Kenntnisse in höherer Mathematik
  • Die Integration wird durch Summieren ersetzt. Das Ergebnis ist zwar nicht exakt, genügt aber den meisten praktischen Anforderungen.
  • Anhand von Zwischenergebnissen erkennt man sofort kleine Irrtümer, die sich korrigieren lassen.
  • Die vielen überprüfbaren Zwischenergebnisse steigern das Vertrauen in das Resultat.
  • Durch Hinzufügen weiterer relevanter Formeln kann die Lösung schrittweise der Realität angepasst werden.

Die Vorgehensweise ist immer gleich: Mit elementaren Formeln werden relevante Größen wie Kraft, Beschleunigung oder Temperatur für einen gewissen Zeitpunkt berechnet - das sind die Anfangswerte für den nächsten Zeitpunkt. Die Ergebnisse sind nur dann korrekt, wenn sich von einem Zeitpunkt zum nächsten nur wenig ändert. Wie groß diese Änderungen und vor allem jeder Zeitschritt sein dürfen, kann man den Ergebnissen leicht entnehmen. Komplexe Formeln, wie sie beispielsweise bei der Wettervorhersage vorkommen, lassen sich gar nicht anders auswerten.

Einzelformeln des freien Falls mit Luftwiderstand

In der folgenden Berechnung wird angenommen, dass ein kugelförmiger Eisen-Meteor der Masse m = 4 g und der Querschnittsfläche A = 1 cm² mit der Geschwindigkeit v = 15 km/s in die Atmosphäre eindringt und abgebremst wird. Gesucht sind Geschwindigkeit und Bremsverzögerung als Funktion der Höhe. Diese Werte werden in bekannte Formeln eingesetzt und für jeden Zeitschritt neu berechnet. Die Einzelergebnisse werden in der Tabelle zu den gesuchten Größen kombiniert und zum Schluss graphisch ausgegeben. Man startet das Verfahren in ausreichend großer Höhe h, wo der Luftwiderstand noch vernachlässigbar ist.

  • Die Gravitationsbeschleunigung der Erde wird mit zunehmendem Abstand h über der Erdoberfläche kleiner. Dafür gilt
a_\mathrm{gravi} = 9{,}81\, \frac{\mathrm{m}}{\mathrm{s}^2} \cdot \left( \frac{6370000\,\mathrm{m}}{6370000\,\mathrm{m} +h} \right)^2
 \rho(h) = \rho(\text{Boden}) \cdot e^{-\frac{h}{8400\,\mathrm{m}}}
F_\text{Luft} = 0{,}5 \cdot \rho(h) \cdot C_w \cdot A \cdot v^2
  • Bei Flugrichtung zum Erdmittelpunkt ist die effektive Beschleunigung auf den Meteor der Masse m die Differenz von Gravitationsbeschleunigung und Bremsbeschleunigung
a_\mathrm{gesamt} = a_\mathrm{gravi} - \frac{F_\mathrm{Luft}}{m}
  • Mit diesem Zwischenergebnis lässt sich einen Zeitschritt dt später die dann gültige Geschwindigkeit errechnen
v_\mathrm{neu} = v_\mathrm{alt} + a_\mathrm{gesamt} \cdot dt
  • und daraus der Ort, an dem sich der Meteor dann befindet. Damit startet ein neuer Zyklus.
h_\mathrm{neu} = h_\mathrm{alt} + v_\mathrm{neu} \cdot dt

Die Berechnung erfolgt schrittweise mit elementaren Mitteln und entspricht einer einfachen Integration, die bei ausreichend kleinem dt brauchbare Ergebnisse liefert. Speziell für die letzten beiden Schritte existieren bessere, aber auch aufwendigere Verfahren, die in Numerische Integration beschrieben sind. Oft ist deren Anwendung übertrieben, wenn nur ein schneller Überblick gewünscht wird oder - wie in diesem Beispiel - die Formel für den Strömungswiderstand für Überschallgeschwindigkeit nicht exakt gilt.

Numerische Lösung

Berechnungstabelle für freien Fall mit Luftwiderstand
Abbremsung eines Meteors in der Atmosphäre

Zunächst werden die Parameter in den Zellen J1 bis J5 und die Startwerte in A3, B3, C3 festgelegt, diese Werte werden fast überall in der Tabelle benötigt. In anderen Programmiersprachen würde man von „globalen Variablen“ sprechen. Die eben aufgezählten Formeln werden in benachbarten Spalten der Tabellenkalkulation programmiert, die Zwischenergebnisse werden im Regelfall in weiter rechts liegenden Spalten weiterverarbeitet. Die „Weiterschaltung“ in die folgende Zeile erfolgt dadurch, dass das Ergebnis der Zelle G3 verwendet wird, um den Inhalt der Zelle B4 nach dem folgenden Zeitschritt zu berechnen. Zum Schluss kopiert man die Formeln der 3. bzw. 4. Zeile in die nächsten 2000 Zeilen - gleichzeitig wird das Ergebnis berechnet.

Von ausschlaggebender Wichtigkeit für die physikalische Korrektheit der Ergebnisse ist die sinnvolle Wahl des Zeitschrittes dt, der möglichst klein sein soll und in der nebenstehenden Tabelle den - für diese Aufgabenstellung - recht hohen Wert 0,2 s hat. Das führt in der Umgebung der Zelle G20 zu gerade noch akzeptierbaren Wertesprüngen von etwa 40 %. Allerdings bewirkt auch eine Vergrößerung auf dt = 1 s noch keine gravierenden Änderungen, was die Robustheit dieses Lösungsverfahrens demonstriert.

Im nebenstehenden Bild wird neben der Tabelle die Gesamtbeschleunigung in Abhängigkeit von der Höhe dargestellt. Die überraschenden Ergebnisse:

  • Die Meteore werden fast unabhängig von ihrer Masse in etwa 40 km Höhe am stärksten gebremst und können dabei in Bruchstücke zerlegt werden oder verglühen.
  • Die Geschwindigkeiten in den letzten Kilometern über der Erdoberfläche betragen stets etwa 40 m/s - wenn die Bruchstücke bis dahin nicht verglüht sind. Der berechnete Geschwindigkeitsverlauf ist im unteren Bild dargestellt.

Weiterführende Untersuchungen

Das beschriebene Verfahren lädt dazu ein, Parameter wie Größe und Anfangsgeschwindigkeit zu variieren und deren Auswirkungen auf die berechneten Ergebnisse zu untersuchen. Diese Art von „experimenteller Mathematik“ kann zu größerem Verständnis der enthaltenen Physik führen als die Auswertung der komplexen Formeln im vorhergehenden Absatz.

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Methode des freien Kopfes — Getting Things Done (kurz GTD) ist eine Selbstmanagement Methode von David Allen. GTD basiert auf dem Prinzip, dass eine Person ihre anstehenden Tätigkeiten in einem Verwaltungssystem notiert und somit den Kopf frei hat für Wichtigeres. Dieses… …   Deutsch Wikipedia

  • Der Clou — Filmdaten Deutscher Titel Der Clou Originaltitel The Sting Produktionsland …   Deutsch Wikipedia

  • Geschichte der Faktorisierungsverfahren — Das Faktorisierungsproblem für ganze Zahlen ist eine Aufgabenstellung aus dem mathematischen Teilgebiet der Zahlentheorie. Dabei soll zu einer zusammengesetzten Zahl ein nichttrivialer Teiler ermittelt werden. Ist beispielsweise die Zahl 91… …   Deutsch Wikipedia

  • Geschichte der Volksrepublik China von 1949 bis 1957 — Die Geschichte der Volksrepublik China von 1949 bis 1957 beschreibt die Geschichte Chinas nach den Irrungen und Wirren der Zeit davor. Inhaltsverzeichnis 1 Die Zeit 1949 1952 1.1 Konsolidierung und erste Weichenstellungen 1.2 Zerschlagung der… …   Deutsch Wikipedia

  • Technik der Positronen-Emissions-Tomographie — Die Technik der Positronen Emissions Tomographie beschreibt die Verarbeitungsschritte, die zur Bildentstehung in der Positronen Emissions Tomographie beitragen sowie die Leistungsparameter eines PET Systems. Prinzipielles Verarbeitungsschema der… …   Deutsch Wikipedia

  • Ungarische Methode — Die Ungarische Methode, auch Kuhn Munkres Algorithmus genannt, ist ein Algorithmus zum Lösen gewichteter Zuordnungsprobleme auf bipartiten Graphen. Diese Problemklasse ist ein Spezialfall der Linearen Optimierung, für die Algorithmen der… …   Deutsch Wikipedia

  • Jigsaw-Methode — Gruppenpuzzle Das Gruppenpuzzle, nach dem amerikanischen Vorbild auch Jigsaw Methode (engl. jigsaw Puzzle(spiel) , im engeren Sinne Stich /Laubsäge ) genannt, ist eine Form der Gruppenarbeit, beispielsweise mit Schulklassen. Dabei werden die n… …   Deutsch Wikipedia

  • Gentechnik: Bestimmung der Basensequenz —   Der Informationsgehalt einer DNA ist in der linearen Abfolge der einzelnen Basen beziehungsweise Basenpaare enthalten. Wenn es sich um einen proteincodierenden DNA Abschnitt handelt, bestimmt die Basensequenz die Aminosäuresequenz und die Länge …   Universal-Lexikon

  • Die Büchse der Pandora (Buch) — Die Büchse der Pandora (Originaltitel Partners in Crime) ist eine Sammlung von Kriminalgeschichten von Agatha Christie, die 1929 zuerst in den USA von Dodd, Mead and Company [1][2] und am 16. September desselben Jahres im Vereinigten Königreich… …   Deutsch Wikipedia

  • erneuerbare Energien: Nutzung der Sonnenenergie —   Es gäbe kein Leben auf der Erde ohne die Sonne. Die Pflanzen, die Tiere, der Mensch sie existierten nicht ohne Sonnenenergie. Die Geschichte der Sonne zählt 4,5 Milliarden Jahre, noch einmal so lange wird es dauern, bis sie erlischt. Das ist es …   Universal-Lexikon

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”