Operatorenrechnung

Operatorenrechnung

Unter Operatorenrechnung versteht man in der Elektrotechnik und der Systemtheorie der Nachrichtentechnik verschiedene historisch gewachsene mathematische Kalküle zur Beschreibung des Verhaltens von linearen zeitinvarianten Systemen. Anstelle der „klassischen“ Beschreibung durch Differentialgleichungen und Differentialgleichungssysteme und deren aufwändiger Lösung beschreibt die Operatorenrechnung das Verhalten der elementaren Bauelemente und der komplexen Systeme durch Operatoren und führt damit die Differentialgleichungen auf algebraische Gleichungen zurück.

Mathematisch liegt dabei ein in den Dimensionen endlicher Funktionenvektorraum vor, welcher sich immer auch explizit algebraisch formulieren lässt.

Ein System wird dabei durch den folgenden einfachen algebraischen Zusammenhang beschrieben:

\mathrm{Wirkung = Systemcharakteristik \star Ursache}

In allen Operatorenrechnungen verschwindet der Unterschied zwischen den Signalen und den Systemcharakteristiken. Beide werden gleichwertig durch die jeweiligen Operatoren repräsentiert.

Die unterschiedlichen Operatorenrechnungen entstanden in der nachfolgend gegebenen historischen Reihenfolge:

Inhaltsverzeichnis

Die komplexe Wechselstromrechnung

Diese symbolische Methode der Wechselstromrechnung führt (als sog. „jω-Rechnung“) den komplexen Widerstandsoperator (und andere) ein, ist aber an stationäre sinusförmige Signale gebunden. Auch die Einführung der komplexen Frequenz in der erweiterten symbolischen Methode kann daran prinzipiell nichts ändern.

Das Heaviside-Kalkül

Oliver Heaviside erweiterte die symbolische Methode der Wechselstromrechnung empirisch für beliebige Signale, indem er den Differentialoperator p = \frac{d}{dt} einführte und ihn wie eine „normale“ Variable gebrauchte. Diese Heavisidesche Operatorenrechnung führte aber bei der („etwas schwierigen“) Interpretation manchmal (d. h. unter nicht konkret zu spezifizierenden Bedingungen) zu fehlerhaften Ergebnissen und war mathematisch nicht exakt begründet.

Eine Erweiterung und Verallgemeinerung des Heaviside-Kalküls stellt das HY-Kalkül dar [1].

Die Laplace-Transformation

Hauptartikel: Laplace-Transformation

Die von Thomas John l'Anson Bromwich, Karl Willy Wagner, John Renshaw Carson und Gustav Doetsch praxistauglich ausgearbeitete Laplace-Transformation versuchte diese Probleme (ausgehend von der Fourier-Transformation) durch eine Funktionaltransformation zu beseitigen. Dazu mussten aber die Menge der beschreibbaren Zeitfunktionen eingeschränkt und zur Begründung verschiedene Grenzwertprobleme gelöst werden. Die Beweisführung der Sätze der Laplace-Transformation ist oft mathematisch „sehr anspruchsvoll“.

Die Operatorenrechnung nach Mikusiński

Diese algebraisch begründete Operatorenrechnung wurde in den 50er Jahren vom polnischen Mathematiker Jan Mikusiński entwickelt. Sie baut auf der Heavisideschen Operatorenrechnung auf und begründet diese mit algebraischen Methoden mathematisch exakt neu.

Vorteile der Operatorenrechnung nach Mikusiński

  • Ein Operator ist unmittelbar ein mathematisches Modell des Systems.
  • Es ist kein Umweg über einen Bildbereich (Frequenzbereich) nötig, sondern man arbeitet immer im Originalbereich (Zeitbereich).
  • Konvergenzuntersuchungen und daraus folgende Einschränkungen sind nicht notwendig.
  • Die Arbeit mit Distributionen zur Beschreibung des Dirac-Impulses (und ähnlicher Signale) ist nicht nötig.

Nachteile der Operatorenrechnung nach Mikusiński

  • Die algebraische Begründung ist mathematisch sehr abstrakt und für wenig algebraisch ausgebildete „praktizierende Ingenieure“ unanschaulich.
  • Der Übergang zur praktisch oft benutzten „imaginären Frequenz“ und damit die Spektraldarstellung von Signalen ist nicht sofort offensichtlich.

Deshalb und aufgrund der umfangreichen Literatur ist sowohl in der Praxis der Ingenieurtätigkeit als auch in der Lehre heute noch die Laplace-Transformation die meist angewandte Methode der Operatorenrechnung.

Nachweise

  1. Wolfgang Mathis: Theorie nichtlinearer Netzwerke. Springer-Verlag, 1987, ISBN 3-540-18365-5.

Literatur

  • Jan Mikusiński: Operatorenrechnung. Deutscher Verlag der Wissenschaften, Berlin 1957.
  • F. H. Lange: Signale und Systeme - Band 1: Spektrale Darstellung. Verlag Technik, Berlin 1965.
  • Gerhard Wunsch: Geschichte der Systemtheorie. Akademie-Verlag, Leipzig 1985.

Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Operatorenrechnung — operacinis skaičiavimas statusas T sritis automatika atitikmenys: angl. operational calculus vok. Operatorenrechnung, f rus. операционное исчисление, n pranc. calcul opérationnel, m …   Automatikos terminų žodynas

  • Operatorenrechnung nach Mikusiński — Die Operatorenrechnung nach Mikusiński ist eine Operatorenrechnung, die 1950 von Jan Mikusiński ausgearbeitet wurde. Damit begründete er die empirische Operatorenrechnung nach Heaviside durch moderne algebraische Methoden auf der Grundlage des… …   Deutsch Wikipedia

  • Operatorenrechnung nach Heaviside — Die Operatorenrechnung nach Heaviside beschreibt eine nach Oliver Heaviside benannte empirische Operatorenrechnung, welche 1887 in seinem berühmten Werk „Electromagnetic Theory“ veröffentlicht wurde. (englisch operator calculus oder… …   Deutsch Wikipedia

  • Jan Mikusiński — (* 3. April 1913 in Stanisławów; † 27. Juli 1987 in Kattowitz) war ein polnischer Mathematiker, der für seine Beiträge zur Operatorenrechnung in der Analysis bekannt ist. Inhaltsverzeichnis 1 Leben und Wirken 2 Schriften …   Deutsch Wikipedia

  • Jan Mikusinski — Jan Mikusiński (* 3. April 1913 in Stanisławów; † 27. Juli 1987 in Malinka) war ein polnischer Mathematiker, der für seine Beiträge zur Operatortheorie in der Analysis bekannt ist. Inhaltsverzeichnis 1 Leben und Wirken 2 Schriften 3 Literatu …   Deutsch Wikipedia

  • Laplace-Transformation — Die Laplace Transformation, benannt nach Pierre Simon Laplace, ist eine einseitige Integraltransformation, die eine gegebene Funktion f vom reellen Zeitbereich in eine Funktion F im komplexen Spektralbereich (Frequenzbereich; Bildbereich)… …   Deutsch Wikipedia

  • Laplacetransformation — Die Laplace Transformation (benannt nach Pierre Simon Laplace) ist eine einseitige Integraltransformation, die eine gegebene Funktion f(t) vom reellen Zeitbereich (t = Zeit) in eine Funktion F(s) im komplexen Spektralbereich (Frequenzbereich;… …   Deutsch Wikipedia

  • Petzval-Transformation — Die Laplace Transformation (benannt nach Pierre Simon Laplace) ist eine einseitige Integraltransformation, die eine gegebene Funktion f(t) vom reellen Zeitbereich (t = Zeit) in eine Funktion F(s) im komplexen Spektralbereich (Frequenzbereich;… …   Deutsch Wikipedia

  • Karl Willy Wagner — (* 22. Februar 1883 in Friedrichsdorf, Taunus; † 4. September 1953 ebenda) war ein deutscher Nachrichtentechniker und neben George Ashley Campbell Mitbegründer der Theorie der elektrischen Filter. Inhaltsverzeichnis 1 Leben 2 Auszeichnungen …   Deutsch Wikipedia

  • Jan Mikusiński — (3 avril 1913 Ivano Frankivsk en polonais Stanisławów 27 juillet 1987 Katowice) est un mathématicien polonais connu pour son travail en analyse. Mikusiński a développé et donné des fondations mathématiques solides au calcul… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”