- Differentialgleichung
-
Eine Differentialgleichung (auch Differenzialgleichung, oft durch DGL oder DG abgekürzt) ist eine mathematische Gleichung für eine gesuchte Funktion y(x), die von einer oder mehreren Variablen x abhängt und in welcher Ableitungen der Funktion enthalten sind. Die Differentialgleichung drückt mithin eine Abhängigkeit zwischen den Variablen x, der Funktion y und Ableitungen dieser Funktion aus. Viele Naturgesetze können mittels Differentialgleichungen formuliert werden. Differentialgleichungen sind daher ein wesentliches Werkzeug der mathematischen Modellierung. Dabei beschreibt eine Differentialgleichung das Änderungsverhalten dieser Größen zueinander. Differentialgleichungen sind ein wichtiger Untersuchungsgegenstand der Analysis, die die Lösungstheorie untersucht. Nicht nur weil für viele Differentialgleichungen keine explizite Lösungsdarstellung möglich ist, spielt die näherungsweise Lösung mittels numerischer Verfahren eine wesentliche Rolle. Eine Differentialgleichung kann durch ein Richtungsfeld veranschaulicht werden.
Inhaltsverzeichnis
Typen von Differentialgleichungen
Man unterscheidet verschiedene Typen von Differentialgleichungen. Ganz grob unterteilen sie sich in die folgenden Teilgebiete. Alle der folgenden Typen können im Wesentlichen unabhängig und gleichzeitig nebeneinander auftreten.
Gewöhnliche Differentialgleichungen
→ Hauptartikel Gewöhnliche Differentialgleichung
Hängt die Funktion y = y(x) lediglich von einer Variablen ab, so spricht man von einer gewöhnlichen Differentialgleichung. Es kommen lediglich gewöhnliche Ableitungen nach der einen Veränderlichen vor.
Schreibt sich die gewöhnliche Differentialgleichung in der Form
so heißt die gewöhnliche Differentialgleichung implizit. Ist die Differentialgleichung nach der höchsten Ableitung aufgelöst, d. h. es gilt
so nennt man die gewöhnliche Differentialgleichung explizit. In den Anwendungen sind explizite gewöhnliche Differentialgleichungen mathematisch einfacher zu verarbeiten. Es gibt eine abgeschlossene Theorie expliziter gewöhnlicher Differentialgleichungen.
Partielle Differentialgleichung
→ Hauptartikel Partielle Differentialgleichung
Hängt die Lösung y von mehreren Unbekannten ab und treten in der Gleichung partielle Ableitungen nach mehr als einer der Unbekannten auf, so spricht man von einer partiellen Differentialgleichung. Partielle Differentialgleichungen sind ein großes Feld und die Theorie ist mathematisch nicht abgeschlossen, sondern Gegenstand der aktuellen Forschung in mehreren Gebieten.
Man unterscheidet verschiedene Typen partieller Differentialgleichungen. Zunächst gibt es lineare partielle Differentialgleichungen. Dabei ist die Funktion F linear in den Größen . Die Abhängigkeit bezüglich der Variablen x kann durchaus nicht-linear sein. Die Theorie linearer partieller Differentialgleichungen ist am weitesten fortgeschritten, jedoch weit davon entfernt, abgeschlossen zu sein.
Hängt die Gleichung sowohl nicht-linear in der Veränderlichen x als auch in der Lösung y ab, so nennt man die partielle Differentialgleichung semi-linear. Eine semi-lineare Gleichung ist schon schwieriger zu behandeln.
Ist nur noch Abhängigkeit von den höchsten Ableitungen linear, so spricht man von einer quasi-linearen partiellen Differentialgleichung. Gerade im Gebiet der quasi-linearen Gleichungen werden zur Zeit die meisten Resultate der aktuellen Forschung ermittelt.
Kann man schließlich auch keine lineare Abhängigkeit bezüglich der höchsten Ableitungen feststellen, nennt man die Gleichung eine nicht-lineare partielle Differentialgleichung oder eine vollständig-nichtlineare partielle Differentialgleichung.
Besonders interessant in dem Gebiet partieller Differentialgleichungen sind die Gleichungen zweiter Ordnung. In diesen Spezialfällen gibt es noch weitere Klassifikationsmöglichkeiten.
Weitere Typen
Beim Typus der stochastischen Differentialgleichungen treten in der Gleichung sogenannte stochastische Prozesse auf. Eigentlich sind stochastische Differentialgleichungen keine Differentialgleichungen im obigen Sinne, sondern lediglich gewisse Differentialrelationen, welche als Differentialgleichung interpretiert werden können.
Der Typus der Algebro-Differentialgleichungen zeichnet sich dadurch aus, dass zusätzlich zur Differentialgleichung auch noch algebraische Relationen als Nebenbedingungen gegeben sind.
Weiter gibt es noch sogenannte Delay-Differentialgleichungen. Hier treten neben einer Funktion und ihren Ableitungen zu einem Zeitpunkt t auch noch Funktionswerte bzw. Ableitungen aus der Vergangenheit auf.
Unter einer Integro-Differentialgleichung versteht man eine Gleichung in der nicht nur die Funktion und deren Ableitungen, sondern auch noch Integrationen der Funktion auftauchen. Ein wichtiges Beispiel dazu ist die Schrödingergleichung in der Impulsdarstellung (Fredholm'sche Integralgleichung).
Je nach Anwendungsgebiet und Methodik gibt es noch weitere Typen von Differentialgleichungen.
Systeme von Differentialgleichungen
Man spricht von einem System von Differentialgleichungen, wenn eine vektorwertige Abbildung ist und mehrere Gleichungen
gleichzeitig zu erfüllen sind. Lässt sich dieses implizite Differentialgleichungssystem nicht überall lokal in ein explizites System umwandeln, so handelt es sich um eine Algebro-Differentialgleichung.
Problemstellungen
Die Lösungsmenge einer Differentialgleichung ist im Allgemeinen nicht durch die Gleichung selbst eindeutig bestimmt, sondern benötigt zusätzlich noch weitere Anfangs- oder Randwerte. Im Bereich der partiellen Differentialgleichungen können auch sogenannte Anfangsrandwertprobleme auftreten.
Grundsätzlich wird bei Anfangs- oder Anfangsrandwertproblemen eine der Veränderlichen als Zeit interpretiert. Bei diesen Problemen werden gewisse Daten zu einem gewissen Zeitpunkt, nämlich dem Anfangszeitpunkt, vorgeschrieben.
Bei den Randwert- oder Anfangsrandwertproblemen wird eine Lösung der Differentialgleichung in einem beschränkten oder unbeschränkten Gebiet gesucht und wir stellen als Daten sogenannte Randwerte, welche eben auf dem Rand des Gebietes gegeben sind. Je nach Art der Randbedingungen unterscheidet man weitere Typen von Differentialgleichungen, etwa Dirichlet-Probleme oder Neumann-Probleme.
Lösungsmethoden
Auf Grund der Vielfältigkeiten sowohl bei den eigentlichen Differentialgleichungen als auch bei den Problemstellungen ist es nicht möglich, eine allgemein gültige Lösungsmethodik anzugeben. Lediglich explizite gewöhnliche Differentialgleichungen können mit einer geschlossenen Theorie gelöst werden.
Lie-Theorie
Ein strukturierter allgemeiner Ansatz zur Lösung von Differentialgleichungen wird über die Symmetrie und die kontinuierliche Gruppentheorie verfolgt. 1870 stellte Sophus Lie in seiner Arbeit die Theorie der Differentialgleichungen mit der Lie-Theorie auf eine allgemeingültige Grundlage. Er zeigte, dass die älteren mathematischen Theorien zur Lösung von Differentialgleichungen durch die Einführung von sogenannten Lie-Gruppen zusammengefasst werden können. Ein allgemeiner Ansatz zur Lösung von Differentialgleichungen nutzt die Symmetrie-Eigenschaft der Differentialgleichungen aus. Dabei werden kontinuierliche infinitesimale Transformationen angewendet, die Lösungen auf (andere) Lösungen der Differentialgleichung abbilden. Kontinuierliche Gruppentheorie, Lie-Algebren und Differentialgeometrie werden verwendet, um die tiefere Struktur der linearen und nichtlinearen (partiellen) Differentialgleichungen zu erfassen und die Zusammenhänge abzubilden, siehe dazu auch die Themen Lax-Paare, rekursive Operatoren, Kontakt- und Bäcklund-Transformationen, die schließlich zu den exakten analytischen Lösungen einer Differentialgleichung führen. Symmetriemethoden werden benutzt, um Differentialgleichungen exakt zu lösen.
Existenz und Eindeutigkeit
Die Fragen der Existenz, Eindeutigkeit, Darstellung und numerischen Berechnung von Lösungen sind somit je nach Gleichung vollständig bis gar nicht gelöst. Aufgrund der Bedeutung von Differentialgleichungen in der Praxis ist hierbei die Anwendung der numerischen Lösungsverfahren besonders bei partiellen Differentialgleichungen der theoretischen Untermauerung voraus.
Eines der Millennium-Probleme ist der Existenzbeweis einer regulären Lösung für sogenannte Navier-Stokes-Gleichungen. Diese Gleichungen treten beispielsweise in der Strömungsmechanik auf.
Approximative Methoden
Differentialgleichungen haben als Lösung Funktionen, die Bedingungen an ihre Ableitungen erfüllen. Eine Approximation geschieht meist, indem Raum und Zeit durch ein Rechengitter in endlich viele Teile zerlegt werden (Diskretisierung). Die Ableitungen werden dann nicht mehr durch einen Grenzwert dargestellt, sondern durch Differenzen approximiert. In der numerischen Mathematik wird der dadurch entstandene Fehler analysiert und möglichst gut abgeschätzt.
Je nach Art der Gleichung werden unterschiedliche Diskretisierungsansätze gewählt, bei partiellen Differentialgleichungen etwa Finite-Differenzen-Verfahren, Finite-Volumen-Verfahren oder Finite-Elemente-Verfahren.
Die diskretisierte Differentialgleichung enthält keine Ableitungen mehr, sondern nur noch rein algebraische Ausdrücke. Damit ergibt sich entweder eine direkte Lösungsvorschrift oder ein lineares oder nichtlineares Gleichungssystem, welches dann mittels numerischer Verfahren gelöst werden kann.
Auftreten und Anwendungen
Eine Vielzahl von Phänomenen in Natur und Technik kann durch Differentialgleichungen und darauf aufbauende mathematische Modelle beschrieben werden. Einige typische Beispiele sind:
- Vielen physikalischen Theorien liegen Differentialgleichungen zu Grunde: Bewegungsgleichungen oder Schwingungen in der newtonschen Mechanik, das Belastungsverhalten von Bauteilen, die Elektrodynamik wird von den Maxwell-Gleichungen beherrscht, die Quantenmechanik wird von der Schrödingergleichung.
- in der Astronomie die Bahnen der Himmelskörper und die Turbulenzen im Innern der Sonne,
- in der Biologie etwa Prozesse bei Wachstum, bei Strömungen oder in Muskeln, oder in der Evolutionstheorie.
- in der Chemie die Kinetik von Reaktionen,
- in der Elektrotechnik das Verhalten von Netzwerken mit energiespeichernden Elementen,
- in der Differentialgeometrie das Verhalten von Flächen,
- in der Strömungsmechanik das Verhalten eben dieser Strömungen,
- in der Ökonomie die Analyse von wirtschaftlichen Wachstumsprozessen (Wachstumstheorie).
- in der Informatik beispielsweise das Image-Inpainting (das Herausrechnen von Schrift oder Logos aus Bildern)[1]
Das Feld der Differentialgleichungen hat der Mathematik entscheidende Impulse verliehen. Viele Teile der aktuellen Mathematik forschen an der Existenz-, Eindeutigkeits- und Stabilitätstheorie verschiedener Typen von Differentialgleichungen.
Beispiele von Differentialgleichungen
- Beispiele von linearen gewöhnlichen Differentialgleichungen
- Beispiele von nichtlinearen gewöhnlichen Differentialgleichungen
- Partielle Differentialgleichungen
Literatur
- G. H. Golub, J. M. Ortega: Wissenschaftliches Rechnen und Differentialgleichungen. Eine Einführung in die Numerische Mathematik. Heldermann Verlag, Lemgo 1995, ISBN 3-88538-106-0.
- G. Oberholz: Differentialgleichungen für technische Berufe - vierte Auflage. Verlag Anita Oberholz, Gelsenkirchen 1995, ISBN 3-9801902-4-2.
- P.J. Olver Equivalence, Invariants and Symmetry Cambridge Press 1995.
- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler Band 2. Viewegs Fachbücher der Technik, Wiesbaden 2001, ISBN 3-528-94237-1.
- H. Stephani Differential Equations: Their Solution Using Symmetries. Edited by M. MacCallum, Cambridge University Press 1989.
Siehe auch
Weblinks
- Matheplanet: Differentialgleichungen – Anleitungen zum Lösen diverser Differentialgleichungen mit Beispielen
- Mathematik-Online Kurs zum Thema Differentialgleichung der Uni Stuttgart
- Prof. Dr. Dörte Haftendorn (Uni Lüneburg) – Differentialgleichungen: Numerik, Beispiele, Isoklinen, ...
- Academic Earth – MIT – Differential Equations von Professor Arthur Mattuck
- Differentialgleichungen in der Schulmathematik – Eine kurze Einführung
Einzelnachweise
- ↑ Peterson, Ivars: Filling in Blanks. In: Society for Science & (Hrsg.): Science News. 161, Nr. 19, May 11 2002, S. 299–300. doi:10.2307/4013521. Abgerufen am 11. Mai 2008.
-
Wikimedia Foundation.