- Verzerrtes Produkt
-
In der Mathematik und der Physik, insbesondere in der Differentialgeometrie und der Allgemeinen Relativitätstheorie, bezeichnet das verzerrte Produkt zweier Pseudo-Riemannschen Mannigfaltigkeiten die Produktmannigfaltigkeit mit der verzerrten Produktmetrik.
Definition
Unter dem verzerrten Produkt zweier Pseudo-Riemannschen Mannigfaltigkeiten (M,gM) und (N,gN) längs einer strikt positiven Funktion versteht man die Produktmannigfaltigkeit ausgestattet mit dem Metrischen Tensor . Dabei bezeichnen und die natürlichen Submersionen und g * den Pullback eines Tensors unter einer Abbildung g zwischen zwei Mannigfaltigkeiten. Dabei wird M als Basis und N als Faser der Produktmannigfaltigkeit bezeichnet.
Definition verzerrte Metrik
Unter einer verzerrten Produktmetrik versteht man eine Riemannsche oder Lorentsche Mannigfaltigkeit, deren Metrik durch
dargestellt werden kann. D. h. insbesondere zerfällt die betrachtete Mannigfaltigkeit in das kartesische Produkt einer „y“- und einer „x“-Geometrie, wobei die „x“-Metrik verzerrt wird.
Literatur
- Barrett O’Neill: Semi-Riemannian Geometrie, With Applications to Relativity, Academic Press, 1983
Wikimedia Foundation.