- Entstehung von Farben
-
Farbe entsteht im menschlichen und tierischen Sehorgan als Farbvalenz, wenn ein Farbreiz, das ist Licht mit Wellenlängen zwischen 380 nm und 780 nm und mit spektraler Intensitätsverteilung die Zapfen entsprechend deren Wahrnehmungsspektrum erregt. Hier wird erklärt wie diese spektrale Verteilung entstehen kann. Sinngemäß trifft dies für alle elektromagnetischen Wellen zu.
Inhaltsverzeichnis
Farben selbst leuchtender Objekte
Das für das Erkennen von Farbe nötige Licht kann direkt von „Strahlern“ verschiedener Art ausgehen.
Emission
Es werden in Atomen die Elektronen durch Zufuhr von Energie angeregt, und so in einen Zustand höherer Energie versetzt. Nach kurzer Zeit fällt das angeregte Elektron wieder in einen Zustand niedrigerer Energie zurück und gibt die zuvor erhaltene Energie in Form von elektromagnetischer Strahlung ab.
Je höher die Energie des Elektronensprungs ist, desto kurzwelliger ist die Strahlung. Liegt die Strahlung im Bereich des sichtbaren Lichts, sieht man den Körper leuchten.
Da die Elektronen eines Atoms nicht beliebige, sondern nur ganz bestimmte Energiezustände einnehmen können, werden immer nur ganz bestimmte Mengen an Energie (Quanten) und damit ganz bestimmte Wellenlängen abgestrahlt. Das Ergebnis sind sogenannte Spektrallinien, deren monochromatisches Licht vom Menschen als je eine Spektralfarbe wahrgenommen wird.
Beispielhaft kann man diese Wirkung bei der Spektralanalyse oder durch einen Demonstrationsversuch am Gasherd verfolgen. Hierbei wird Natriumchlorid in die Flamme gebracht. Durch deren Hitze werden Elektronen der äußeren Schale der Natriumatome angeregt. Fallen diese Elektronen wieder in den Grundzustand, senden sie ein Photon im Bereich des orangen Lichtes aus. Auch an Straßenlaternen mit Natriumdampflampen sieht man diesen Farbeffekt.
Kontinuierliches Spektrum
Es gibt nicht nur die Emission monochromatischer Linien. Alle Körper senden durch ihren Wärmeinhalt ein kontinuierliches Spektrum aus, dessen spektrale Verteilung von der Temperatur abhängt. Die Ursache ist hier letztlich der Bewegungszustand der Moleküle. Wird bei Zimmertemperatur eine Wärmestrahlung im Infrarot gesendet, verschiebt sich das Strahlungsmaximum mit zunehmender Temperatur nach Rot (sichtbares Rotglühen) über Gelb und Weiß und schließlich nach Blau. Davon kommt der Eindruck des „gelben“ Kerzenlichts über das Weiß des Sonnenlichts bis hin zum „grellen Weiß“ eines Lichtbogens und dem blauweißen Eindruck der Plasmalampen.
Zerlegt man das Licht solcher heißer Lichtquellen durch ein Prisma oder ein Beugungsgitter, so sieht man ein kontinuierliches Spektrum mit allen Farben.
Farben nicht selbst leuchtender Objekte
Das für die Erkennung von Farbe notwendige Licht kann auch indirekt nach Änderungen der spektralen Zusammensetzung von Körpern reflektiert oder durchgelassen werden.
Remission
Viele Körper „haben“ von Natur aus eine Eigenfärbung (grüne Pflanzen, rotes Blut, verschiedene farbige Blüten, rote oder braune Erde). Andere Körper wurden absichtlich mit einer gewünschten Farbe versehen. Beispielhaft hierfür ist jede mit einem Färbemittel gefärbte Textilie, ein lackiertes Auto oder ein angestrichenes Haus.
In diesen Fällen wird nur ein Teil des Lichtes, das auf die farbigen Körper fällt, wieder reflektiert. Die spektrale Zusammensetzung des reflektierten Lichts ist verändert gegenüber der Beleuchtung, und erweckt damit einen Farbeindruck beim Betrachten des Körpers.
Streuung
Die spektrale Zusammensetzung des gestreuten Lichtes ist nicht in allen Streurichtungen die gleiche. Die Streuung hängt stark vom Verhältnis der Teilchengröße zur Wellenlänge ab. In milchigen Medien (wie Milchglas, Opal, staubige Luft) werden die längeren Wellen weniger gestreut als die kürzeren. Deshalb erscheinen solche Medien im Durchlicht gelb bis rot, im Streulicht eher blau. Ein Beispiel hierfür ist das Blau des Himmels und das Rot des Sonnenauf- oder Untergangs.
Brechung
Beim Durchgang des Lichtstrahls durch eine Grenzfläche zwischen zwei optisch durchsichtigen Medien mit unterschiedlicher Brechzahl, wird er durch den Unterschied in den Lichtgeschwindigkeiten abgelenkt. Licht unterschiedlicher Wellenlänge wird verschieden stark gebrochen, da die Lichtgeschwindigkeiten in dichten Medien von der Wellenlänge abhängen. Polychromatisches (= mehrfarbiges) Licht verschiedener Wellenlängen (entsprechend unterschiedlicher (wahrgenommener) Farben) werden unterschiedlich abgelenkt. So kommt es zu einer spektralen Aufspaltung, zur sogenannten Dispersion. Das bekannteste Beispiel ist der Regenbogen.
Interferenz
Bei der Interferenz werden Lichtwellen an dünnen Schichten in zwei Anteile gespalten, die mit einander in eine Wechselwirkung von Verstärkung oder Auslöschung treten. Je nach der Schichtdicke findet die Auslöschung bei unterschiedlichen Wellenlängen statt. Dadurch verändert sich die spektrale Zusammensetzung des auftreffenden Lichtes, das reflektierte oder durchgelassene Licht erweckt deshalb einen Farbeindruck. Typisch sind die Farbringe von auf Wasser ausgebreiteten Öltropfen oder sich bewegenden Schlieren auf Seifenblasen. Sehr schöne Beispiele dafür sind auch die Interferenzfarben der Flügelfedern von Kolibris und Pfauen oder der Flügelschuppen von Schmetterlingen.
Strukturfarben
Strukturfarben sind besondere Interferenzfarben. Sie entstehen, wenn regelmäßige Feinstrukturen zu einer Beugungsinterferenz zwischen den reflektierten oder durchtretenden Lichtwellen führt. Die dabei sichtbaren Farben hängen vom Einfallswinkel des Lichtes und von der Betrachtungsrichtung ab. Leicht zu beobachtendes Beispiel sind die „schillernden“ CDs oder Oberflächenhologramme (Heliogramme). Auch die schillernden Oberflächen einiger Insekten wie Käfer und Schmetterlinge werden auf diese Art farbig.
Siehe auch
- Chemisch-physikalische Grundlagen für die Farbigkeit eines Stoffes
- Körperfarbe
- Lichtfarbe
- Grundfarbe
Literatur
- Hannelore Dittmar-Ilgen: Wie das Salz ins Meerwasser kommt. Hirzel Verlag., Stuttgart 2005, ISBN 3-7776-1315-0.
Weblinks
Wikimedia Foundation.