Fermi Gamma-ray Space Telescope

Fermi Gamma-ray Space Telescope
Illustration des FGST-(GLAST)-Satelliten
GLAST bei den Startvorbereitungen

Das Fermi Gamma-ray Space Telescope (FGST, vormals Gamma-ray Large Area Space Telescope, GLAST) ist ein Weltraumteleskop für die Gammaastronomie. FGST ist ein Gemeinschaftsprojekt der NASA und des US-Energieministeriums, mit weiteren Beteiligungen aus den USA, Frankreich, Deutschland, Japan, Italien und Schweden.

Inhaltsverzeichnis

Ziel der Mission

FGST soll Quellen hochenergetischer Gammastrahlen wie aktive galaktische Kerne, Pulsare, stellare schwarze Löcher, Blasare, Supernovaüberreste, Gammablitze, Flares der Sonne und von Sternen finden und ihre Eigenschaften und die der diffusen Gammastrahlung untersuchen. Damit sollen anders nur schwer messbare Eigenschaften zum Beispiel der Magnetfelder in kosmischen Teilchenbeschleunigern oder der infraroten Strahlungsfelder zwischen Gammaquellen und Erde bestimmt werden. Durch die gegenüber früheren Gammateleskopen stark verbesserten Eigenschaften besteht auch Hoffnung auf die Entdeckung neuer Phänomene, so z.B. der Nachweis einer diffusen Hintergrundstrahlung im Gammastrahlungsbereich, der Hinweise auf exotische Teilchen (Neutralino) aus den Vorhersagen der Teilchenphysik geben könnte oder eine Varianz der Lichtgeschwindigkeit bei hochenergetischen Photonen zur Untermauerung der Schleifenquantengravitation[1].

Start und Orbit

FGST startete am 11. Juni 2008 um 16:05:00.521 Uhr UTC mit einer Delta II 7920H-10C. Nach 75 Minuten Flugzeit wurde GLAST um 17:20 Uhr UTC in der geplanten kreisförmigen Umlaufbahn in 585 km Höhe mit 28,5° Inklination zum Äquator ausgesetzt.[2] Nach Abschluss einer 60-tägigen Testphase begann dann der wissenschaftliche Einsatz. Am 26. August 2008 wurde der Satellit auf den Namen Fermi Gamma-ray Space Telescope umgetauft, zu Ehren des Kernphysikers Enrico Fermi.[3]

Technischer Aufbau

Start von GLAST auf einer Delta-7920H-Rakete
Aufbau von FGST

FGST hat zwei Instrumente:

  • Das Large Area Telescope (LAT) zur Abbildung eines Gesichtsfelds von 2 Steradiant im Energiebereich 20 MeV bis 300 GeV. Abgedeckter Energiebereich, Empfindlichkeit, Gesichtsfeld (20 % des Himmels), Winkelauflösung und Zeitauflösung (10 µs) sollen gegenüber dem Vorgängerinstrument EGRET auf dem Compton Gamma Ray Observatory deutlich verbessert sein. Das Instrument besteht aus 16 gleichartigen Teilchenspurdetektoren von jeweils 40 × 40 × 87,5 cm Größe. Diese bestehen wiederum aus dünnen Wolframfolien, an denen sich aus den Gammastrahlen beim Auftreffen Elektron-Positron-Paare bilden. Die Folien sind zwischen 18 übereinander gestapelten Siliziumdetektoren angebracht, mit deren Hilfe die Bahnen der Elektron-Positron-Paare verfolgt werden können. Am Ende der Stapel bestimmt ein Halbleiter-Kalorimeter aus acht Lagen mit jeweils zwölf Cäsiumiodid-Szintillatorstäben und Photodioden als Detektor dann auch die Energie der Teilchen. Um die kosmische Gammastrahlung vom tausendfach höherem Strahlungshintergrund zu unterscheiden, ist das LAT zusätzlich mit einem segmentiert aufgebauten Antikoinzidenzdetektor aus Plastikszintillatoren und Photomultipliern umgeben. Dieses sortiert mit Hilfe von Rechentechnik Einschläge von Teilchenstrahlung (Hadronen) in das LAT aus. Das LAT hat ein Gewicht von drei Tonnen.[4]Es macht somit den größten Teil des Gewichts von GLAST aus.
  • Der GLAST Burst Monitor (GBM) zur Suche nach Gammablitzen am gesamten Teil des Himmels, der von der niedrigen Erdumlaufbahn von GLAST aus gesehen nicht von der Erde verdeckt ist. Das GBM besteht hauptsächlich aus zwölf Natriumiodid-Szintillationsdetektoren mit angeschlossenen Photomultipliern und entsprechender Auswertelektronik. Die Detektoren haben durch die flache Form der Kristalle (Zylinder mit 1,27 cm Höhe und 12,7 cm Durchmesser) eine gewisse Richtungsempfindlichkeit und sind so angebracht, dass sie jeweils in eine andere Richtung weisen. Durch Auswertung der Signale von mehreren Detektoren kann so grob die Richtung (Onbord auf 15°, mit Nachbearbeitung der Signale bis auf 3°) der Gammastrahlenquelle bestimmt werden. Der von diesen Detektoren erfasste Energiebereich ist 10 keV bis 1 MeV.
  • Um auch den Energiebereich zwischen dem Erfassungsbereich des LATs und den Natriumiodid-Szintillationsdetektoren des GBM erfassen zu können (also der Bereich zwischen 1 und etwa 20 MeV), ist der GBM noch mit zwei BGO-Szintillationsdetektoren aus 12,7 × 12,7 cm großen Bismutgermanatkristallen (Bi4Ge3O12 → BGO) ausgestattet die zur Registrierung des entstehenden Lichtes je zwei Photomultiplier besitzen. Die beiden nicht richtungsempfindlichen BGO-Szintillationsdetektoren sind an den beiden Seiten von GLAST angebracht und beobachten jeweils eine Hälfte des Himmels.

Technische Daten

  • Masse: 4,5 Tonnen
  • Orbit: kreisförmige Bahn in 565 Kilometer Höhe
  • Höhe: 2,9 Meter
  • Spannweite der Solarzellenflügel: 15 Meter
  • Energieversorgung: zwei Solarzellenflügel mit insgesamt 650 Watt Leistung
  • Telemetrie: Übermittlung im S-Band und Ku-Band

Entdeckungen

Fermi entdeckte, dass die in Gewittern entstehende Gammastrahlung zur Bildung von Elektron-Positron-Paaren führt, die in den Weltraum entkommen und entlang der Linien des Erdmagnetfeldes fliegen.[5][6]

Siehe auch: Terrestrischer Gammablitz

Weblinks

 Commons: GLAST – Sammlung von Bildern, Videos und Audiodateien

Literatur

  • Die GLAST-Mission. Ein Blick in die kosmischen Hexenkessel. In: Sterne und Weltraum. Mai 2008, S. 40–48,

Einzelnachweise

  1. Lee Smolin: Loop-Quantengravitation – Quanten der Raumzeit. In: Spektrum der Wissenschaft. Mai 2005, S. 32–41. (online, PDF, 359 kB)
  2. http://www.spaceflightnow.com/delta/d333/status.html
  3. NASA Renames Observatory For Fermi, Reveals Entire Gamma-Ray Sky
  4. William B. Atwood, Peter F. Michelson und Seven Ritz: Ein Fenster zum heißen Universum. In: Spektrum der Wissenschaft. April 2008, S. 34–41. ISSN 0170-2971
  5. Holger Dambeck: Überraschender Fund, Satellit entdeckt Antimaterie über Gewitterwolken in Spiegel Online, Datum: 11. Januar 2011, Abgerufen: 15. Januar 2011
  6. NASA's Fermi Catches Thunderstorms Hurling Antimatter into Space, Datum: 11. Januar 2011, Abgerufen: 15. Januar 2011

Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Fermi Gamma-ray Space Telescope — Pour les articles homonymes, voir Fermi. Fermi Gamma ray Space Telescope …   Wikipédia en Français

  • Fermi Gamma-ray Space Telescope — Infobox Space telescope name = Fermi Gamma ray Space Telescope (GLAST) caption = Artist s conception of the GLAST satellite organization = NASA, the United States Department of Energy, and government agencies in France, Germany, Italy, Japan, and …   Wikipedia

  • Fermi Gamma-ray Space Telescope — ▪ United States satellite       U.S. satellite, launched June 11, 2008, that was designed to study gamma ray emitting sources. These sources are the universe s most violent and energetic objects and include gamma ray bursts (gamma ray burster),… …   Universalium

  • Gamma-ray Large Area Space Telescope — Fermi Gamma ray Space Telescope Pour les articles homonymes, voir Fermi. GLAST …   Wikipédia en Français

  • Gamma-ray Large Area Space Telescope — Illustration des FGST (GLAST) Satelliten GLAST bei den Startvorbereitungen …   Deutsch Wikipedia

  • Gamma ray burst — [ GRB 990123 taken on January 23, 1999. The burst is seen as a bright dot denoted by a square on the left, with an enlarged cutout on the right. The object above it with the finger like filaments is the originating galaxy. This galaxy seems to be …   Wikipedia

  • GLAST (Gamma-ray Large Area Space Telescope) — Космический гамма телескоп Ферми (Fermi Gamma ray Space Telescope, GLAST) Художественное изо …   Википедия

  • Compton Gamma-Ray Observatory — Vue d artiste du Compton Gamma Ray Observatory Caractéristiques Organisation NASA …   Wikipédia en Français

  • International Gamma-Ray Astrophysics Laboratory — Pour les articles homonymes, voir Intégral. International Gamma Ray Astrophysics Laboratory Caractéristiques Organisation ESA, NASA, RKA Domaine Étude des rayons gamma et X …   Wikipédia en Français

  • Telescope spatial — Télescope spatial Le télescope spatial Hubble en orbite autour de la Terre. Un télescope spatial est un télescope placé au delà de l atmosphère. Le télescope spatial présente l avantage par rapport à son homologue terrestre de ne pas être… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”