Fundierte Ordnung

Fundierte Ordnung

Eine fundierte Menge (auch wohlfundierte Menge, fundierte Ordnung, terminierende Ordnung, noethersche Ordnung) ist eine halbgeordnete Menge, die keine unendlichen absteigenden Ketten enthält. Äquivalent dazu heißt eine halbgeordnete Menge fundiert, wenn jede nichtleere Teilmenge mindestens ein minimales Element enthält.

Alle wohlgeordneten Mengen sind fundiert, weil in einer wohlgeordneten Menge jede nichtleere Teilmenge ein kleinstes Element haben muss und das kleinste Element einer Menge immer auch minimal ist. Anders als wohlgeordnete Mengen brauchen fundierte Mengen nicht totalgeordnet zu sein. Alle total geordneten fundierten Mengen sind wohlgeordnet.

Inhaltsverzeichnis

Noethersche Induktion

Fundierte Mengen erlauben die Anwendung der noetherschen Induktion, einer Version der transfiniten Induktion: Ist P eine Eigenschaft von Elementen einer unter einer Ordnungsrelation ≤ fundierten Menge X, und sind die folgenden Aussagen wahr:

  1. P(x) ist wahr für alle minimalen Elemente von X.
  2. Ist x ein Element von X und P(y) wahr für alle y<x, dann ist auch P(x) wahr.

Dann ist P(x) wahr für alle Elemente x aus X.

Beispiele

Die ganzen Zahlen, die rationalen Zahlen und die reellen Zahlen enthalten in ihrer natürlichen Anordnung jeweils unendliche absteigende Ketten und sind somit nicht fundiert.

Die Potenzmenge einer Menge mit der Teilmengenbeziehung als Ordnung ist genau dann fundiert, wenn die Menge endlich ist. Alle endlichen halbgeordneten Mengen sind fundiert, weil endliche Mengen nur endliche Ketten haben können.

Die folgenden Mengen sind fundiert, aber nicht totalgeordnet:

ab, falls a ein Teiler von b ist
  • die Menge N×N aller Paare natürlicher Zahlen mit der Ordnung
(m,n)≤(a,b), falls ma und nb
  • die Menge der endlichen Zeichenketten über einem vorgegebenen Alphabet mit der Ordnung
st, falls s eine Teilzeichenkette von t ist
st, falls s ein Teilausdruck von t ist
  • jede Menge von Mengen mit der Ordnung
AB, falls A ist ein Element von B (wirklich Element, nicht Teilmenge!)

Länge absteigender Ketten

Ist (X,≤) eine fundierte Menge und x aus X, dann sind die bei x beginnenden absteigenden Ketten allesamt endlich, aber ihre Länge muss nicht beschränkt sein. Betrachte z. B. die Menge

X := {(a,b) | a,b aus N0, ab > 0 oder a=b=0}

(wobei N0={0, 1, 2, 3, …}) mit der Ordnung

(m,n)≤(a,b), falls (a,b)=(0,0) oder (m=a und nb)

Darin ist z. B. (0,0)>(4,1)>(4,2)>(4,3)>(4,4) und (0,0)>(2,1)>(2,2). X ist fundiert, aber es gibt bei (0,0) beginnende absteigende Ketten beliebiger (endlicher) Länge.

Siehe auch


Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Fundierte Menge — In der Mathematik ist eine fundierte Menge (auch wohlfundierte Menge, fundierte Ordnung, terminierende Ordnung, noethersche Ordnung) eine halbgeordnete Menge, die keine unendlichen echt absteigenden Ketten enthält. Äquivalent dazu heißt eine… …   Deutsch Wikipedia

  • Lineare Ordnung — In der Mathematik sind Ordnungsrelationen Verallgemeinerungen der „kleiner gleich“ Beziehung. Sie erlauben es, Elemente einer Menge miteinander zu vergleichen. Eine Ordnungsrelation ist formal eine zweistellige Relation auf einer Menge M mit… …   Deutsch Wikipedia

  • Partielle Ordnung — In der Mathematik sind Ordnungsrelationen Verallgemeinerungen der „kleiner gleich“ Beziehung. Sie erlauben es, Elemente einer Menge miteinander zu vergleichen. Eine Ordnungsrelation ist formal eine zweistellige Relation auf einer Menge M mit… …   Deutsch Wikipedia

  • Totale Ordnung — In der Mathematik sind Ordnungsrelationen Verallgemeinerungen der „kleiner gleich“ Beziehung. Sie erlauben es, Elemente einer Menge miteinander zu vergleichen. Eine Ordnungsrelation ist formal eine zweistellige Relation auf einer Menge M mit… …   Deutsch Wikipedia

  • Wohlfundierte Ordnung — Eine fundierte Menge (auch wohlfundierte Menge, fundierte Ordnung, terminierende Ordnung, noethersche Ordnung) ist eine halbgeordnete Menge, die keine unendlichen absteigenden Ketten enthält. Äquivalent dazu heißt eine halbgeordnete Menge… …   Deutsch Wikipedia

  • Absteigende Kette — In der Mathematik sind Ordnungsrelationen Verallgemeinerungen der „kleiner gleich“ Beziehung. Sie erlauben es, Elemente einer Menge miteinander zu vergleichen. Eine Ordnungsrelation ist formal eine zweistellige Relation auf einer Menge M mit… …   Deutsch Wikipedia

  • Aufsteigende Kette — In der Mathematik sind Ordnungsrelationen Verallgemeinerungen der „kleiner gleich“ Beziehung. Sie erlauben es, Elemente einer Menge miteinander zu vergleichen. Eine Ordnungsrelation ist formal eine zweistellige Relation auf einer Menge M mit… …   Deutsch Wikipedia

  • Geordnete Menge — In der Mathematik sind Ordnungsrelationen Verallgemeinerungen der „kleiner gleich“ Beziehung. Sie erlauben es, Elemente einer Menge miteinander zu vergleichen. Eine Ordnungsrelation ist formal eine zweistellige Relation auf einer Menge M mit… …   Deutsch Wikipedia

  • Halbgeordnete Menge — In der Mathematik sind Ordnungsrelationen Verallgemeinerungen der „kleiner gleich“ Beziehung. Sie erlauben es, Elemente einer Menge miteinander zu vergleichen. Eine Ordnungsrelation ist formal eine zweistellige Relation auf einer Menge M mit… …   Deutsch Wikipedia

  • Halbordnung — In der Mathematik sind Ordnungsrelationen Verallgemeinerungen der „kleiner gleich“ Beziehung. Sie erlauben es, Elemente einer Menge miteinander zu vergleichen. Eine Ordnungsrelation ist formal eine zweistellige Relation auf einer Menge M mit… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”