Gell-Mann-Matrizen

Gell-Mann-Matrizen

Die Gell-Mann-Matrizen, benannt nach Murray Gell-Mann, sind eine mögliche Darstellung der infinitesimalen Generatoren der Speziellen Unitären Gruppe SU(3).

Diese Gruppe hat acht hermitesche Generatoren, die man als Ti mit i=1..8 schreiben kann. Sie erfüllen die Kommutatorrelation (siehe: Lie-Algebra)

\left[T^a,T^b\right]={i}\,f^{abc}\,T^c

(wobei die Einsteinsche Summenkonvention verwendet wurde). Die fabc werden als Strukturkonstanten bezeichnet und sind komplett-antisymmetrisch bezüglich Vertauschung der Indizes. Für die SU(3) haben sie die Werte:


f^{123}=1,~f^{147}=f^{246}=f^{257}=f^{345}=\frac{1}{2},~f^{156}=f^{367}=-\frac{1}{2},~f^{458}=f^{678}=\frac{\sqrt{3}}{2}

Jeden Satz von Matrizen, die die Kommutatorrelation erfüllen, kann man als Generatoren der Gruppe verwenden.

Die Gell-Mann-Matrizen sind ein Standardsatz solcher Matrizen. Mit den obigen Generatoren sind sie (analog zu den Pauli-Matrizen) verknüpft durch:

T^a=\frac{1}{2}\lambda^a

Sie sind als 3x3-Matrizen gewählt und haben die Form:

\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}
\lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}

Sie erfüllen folgende Eigenschaften:

Anwendung finden sie z.B. bei Berechnungen in der Quantenchromodynamik, die durch eine SU(3)-Theorie beschrieben wird. Daraus kann man auch die Wahl als 3x3-Matrizen verstehen, da die Matrizen auf Farbladungstriplets wirken sollen.

Siehe auch

Literatur


Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Gell-Mann — Murray Gell Mann Murray Gell Mann an der Harvard University Murray Gell Mann [1](* 15. Septembe …   Deutsch Wikipedia

  • Murray Gell-Mann — an der Harvard University …   Deutsch Wikipedia

  • Pauli-Matrizen — Die Pauli Matrizen σ1,σ2,σ3 (nach Wolfgang Pauli) bilden eine Basis der hermiteschen, spurfreien 2×2 Matrizen und stellen die Wirkung der Drehimpulsoperatoren, auf Spin ½ Zuständen, beispielsweise auf Elektronen, dar. Die Pauli Matrizen lauten …   Deutsch Wikipedia

  • Murray Gellmann — Murray Gell Mann Murray Gell Mann an der Harvard University Murray Gell Mann [1](* 15. Septembe …   Deutsch Wikipedia

  • QCD — Die Quantenchromodynamik (QCD) ist die quantenfeldtheoretische Beschreibung der starken Wechselwirkung. Inhaltsverzeichnis 1 Einleitung 2 Nichtabelsche Eichgruppe 3 Erläuterungen und Abgrenzung zur Kernphysik 4 Lagrangedichte der QCD …   Deutsch Wikipedia

  • Pauli-Matrix — Die Pauli Matrizen σ1,σ2,σ3 (nach Wolfgang Pauli) bilden eine Basis der hermiteschen, spurfreien 2×2–Matrizen und stellen die Wirkung der Drehimpulsoperatoren, auf Spin 1/2 Zuständen, beispielsweise auf Elektronen, dar. Die Pauli Matrizen lauten …   Deutsch Wikipedia

  • Pauli-Spinmatrizen — Die Pauli Matrizen σ1,σ2,σ3 (nach Wolfgang Pauli) bilden eine Basis der hermiteschen, spurfreien 2×2–Matrizen und stellen die Wirkung der Drehimpulsoperatoren, auf Spin 1/2 Zuständen, beispielsweise auf Elektronen, dar. Die Pauli Matrizen lauten …   Deutsch Wikipedia

  • Paulimatrix — Die Pauli Matrizen σ1,σ2,σ3 (nach Wolfgang Pauli) bilden eine Basis der hermiteschen, spurfreien 2×2–Matrizen und stellen die Wirkung der Drehimpulsoperatoren, auf Spin 1/2 Zuständen, beispielsweise auf Elektronen, dar. Die Pauli Matrizen lauten …   Deutsch Wikipedia

  • Paulimatrizen — Die Pauli Matrizen σ1,σ2,σ3 (nach Wolfgang Pauli) bilden eine Basis der hermiteschen, spurfreien 2×2–Matrizen und stellen die Wirkung der Drehimpulsoperatoren, auf Spin 1/2 Zuständen, beispielsweise auf Elektronen, dar. Die Pauli Matrizen lauten …   Deutsch Wikipedia

  • Spinmatrizen — Die Pauli Matrizen σ1,σ2,σ3 (nach Wolfgang Pauli) bilden eine Basis der hermiteschen, spurfreien 2×2–Matrizen und stellen die Wirkung der Drehimpulsoperatoren, auf Spin 1/2 Zuständen, beispielsweise auf Elektronen, dar. Die Pauli Matrizen lauten …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”