- Harvard-Architektur
-
Dieser Artikel wurde aufgrund von inhaltlichen Mängeln auf der Qualitätssicherungsseite der Redaktion Informatik eingetragen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Informatik auf ein akzeptables Niveau zu bringen. Hilf mit, die inhaltlichen Mängel dieses Artikels zu beseitigen und beteilige dich an der Diskussion! (+)
Begründung: Belege und mögliche UrheberrechtsverletzungDie Harvard-Architektur bezeichnet in der Informatik ein Schaltungskonzept zur Realisierung besonders schneller CPUs und Signalprozessoren. Der Befehlsspeicher ist physisch vom Datenspeicher getrennt und beide werden über getrennte Busse angesteuert.
Motivation
Der Vorteil dieser Architektur besteht darin, dass Befehle und Daten gleichzeitig geladen, bzw. geschrieben werden können. Bei einer klassischen Von-Neumann-Architektur sind hierzu mindestens zwei aufeinander folgende Buszyklen notwendig. Ein potentieller Nachteil gegenüber der Von-Neumann-Architektur ist der aller paralleler Systeme, die möglichen Race Conditions bei den Daten- und Befehlszugriffen und ein damit nicht-deterministischer Programmablauf.
Zudem sorgt die physikalische Trennung von Daten und Programm dafür, dass einfach eine Zugriffsrechtetrennung und Speicherschutz realisierbar ist. Um z.B. zu verhindern das bei Softwarefehlern Programmcode überschrieben werden kann, wurde für den Programmcode ein im Betrieb nur lesbarer Speicher (z.B. ROM, Lochkarten) verwendet, für die Daten schreib- und lesbarer Speicher (z.B. RAM, Ringkernspeicher). Nachteilig ist allerdings, dass nicht benötigter Datenspeicher nicht als Programmspeicher genutzt werden kann, also eine erhöhte Speicherfragmentierung auftritt.
Geschichte
Die Harvard-Architektur wurde zunächst überwiegend in RISC-Prozessoren konsequent umgesetzt. Moderne Prozessoren in Harvard-Architektur sind in der Lage, parallel mehrere Rechenwerke gleichzeitig mit Daten und Befehlen zu füllen. Bei Signalprozessoren der C6x-Familie von Texas Instruments ist dies beispielsweise für bis zu acht Rechenwerke möglich.
Ein weiterer Vorteil der Trennung ist, dass die Datenwortbreite (die kleinste adressierbare Einheit) und Befehlswortbreite unabhängig festgelegt werden kann. Damit kann auch, wenn erforderlich, die Effizienz des Programmspeicherbedarfs verbessert werden, da sie nicht direkt von den Datenbusbreiten abhängig ist, sondern ausschließlich vom Befehlssatz. Dies kann z.B. in eingebetteten Systemen oder kleinen Mikrocontroller-Systemen von Interesse sein.
Single-chip Mikrocontroller, die mit festen Programmen arbeiten, verwenden meist die Harvard-Architektur. Bekannte Vertreter sind z. B. (PICmicro) von Microchip Technology Inc., die Intel-Familien 8048 und 8051 und die AVR-Reihe von Atmel.
Eine bedeutende Erweiterung der Harvard-Architektur wurde von der amerikanischen Firma Analog Devices Anfang der 1990er Jahre durch die Einführung der Super-Harvard-Architektur-Technologie vorgenommen, bei der die genannten Speichersegmente als Dual-Port-RAMs ausgeführt sind, die kreuzweise zwischen den Programm- und Daten-Bussen liegen.
Viele moderne Prozessoren verwenden eine Mischform aus Harvard- und von-Neumann-Architektur, bei der innerhalb des Prozessorchips Daten und Programm voneinander getrennt verwaltet werden, eigene Caches und MMUs haben und über getrennte interne Busse laufen, extern jedoch in einem gemeinsamen Speicher liegen. Wenn CPU Pipelining implementiert ist, ist der Vorteil dieser Mischform (auf Prozessorebene), dass deren einzelne Pipelinestufen in Bezug auf Speicherzugriffe getrennt werden können. Ein typisches Beispiel für diese Art Prozessoren ist der Motorola 68030.
Siehe auch
Wikimedia Foundation.