Kontrastmittelverstärkter Ultraschall

Kontrastmittelverstärkter Ultraschall

Beim kontrastmittelverstärkten Ultraschall werden Ultraschallkontrastmittel bei der Sonografie oder Echokardiografie eingesetzt. Diese Kontrastmittel sind gasgefüllte Mikrobläschen (“microbubbles”), die in den meisten Anwendungen intravenös gegeben werden und entweder lungengängig oder nicht-lungengängig sind. Kontrastmittel sind sehr echogen.

Inhaltsverzeichnis

Anwendungen

Abdomen

FNH
Hämangiom
  • Detektion und Charakterisierung von Lebertumoren: Hier macht man sich eine Besonderheit der Leber zunutze. Die Blutversorgung der Leber erfolgt im Gegensatz zu allen anderen Organen (Ausnahme Hypophyse) neben Arterien und Venen über die Pfortader, welche nährstoffreiches Blut aus dem Darm zuführt. Spritzt man Kontrastmittel in eine Armvene, so wird dieses zuerst über die Arterien in die Leber gelangen, anschließend stellt sich das Kontrastmittel abfließend in den Lebervenen dar. Die Anflutung des Kontrastmittels in der Pfortader dauert am längsten (20-30 s), da das Blut erst im Darm zirkuliert und anschließend zur Leber gelangt. Lebereigenes Gewebe wird also auch in dieser sog. Spätphase Kontrastmittel enthalten. Metastasen leberfremder Tumoren enthalten natürlich kein Pfortadersystem und erscheinen daher kontrastmittelfrei (dunkel).
    Manche Tumoren stellen sich im Kontrastmittelverstärkten Ultraschall so typisch dar, dass bei ihnen auf eine Leberbiopsie mittlerweile verzichtet wird.
    • Fokale noduläre Hyperplasie (FNH): Wird von einem Gefäßsystem mit Radspeichenmuster versorgt.
    • Hämangiom: Aus dem zeitlichen Verlauf des Kontrastmittelanflutung von außen nach innen („Irisblenden-Phänomen“) wird auf ein Hämangiom geschlossen.
  • Perfusion der Niere: Hier können nicht durchblutete Bezirke (z. B. Niereninfarkt) frühzeitig abgebildet werden.
  • Darstellung von Pankreastumoren: Hier ist die KM-Sonographie nicht etabliert, da keine derzeit Unterscheidung von bös- und gutartigen Tumoren möglich ist.
  • Verletzungen innerer Organe: Hier kann ein Hämatom (Blutansammlung) im Organ beobachtet werden. Zudem weist das Kontrastmittel bereits geringste Blutungen in den freien Bauchraum nach.

Kardiologie

Zur Detektion von kardialen Shunts wie dem persistierenden Foramen Ovale gilt die Untersuchung mit nicht lungengängigen Kontrastmitteln bei einer Transösophagealen Echokardiografie als Goldstandard. [1] Lungengängige Kontrastmittel werden von der European Association of Echocardiography in ihrem Expertenkonsensus bei suboptimalen Stressechokardiografie-Untersuchungen empfohlen, um die Endokardabgrenzung zu verbessern und damit zuverlässiger die Wandbewegung beurteilen zu können.[2] Einige Ultraschall-Systeme können dabei gleichzeitig die Myokardperfusion darstellen, die bei der Koronaren Herzkrankheit unter Belastung, aber auch beim Akuten Myokardinfarkt verringert ist.

Gynäkologie

Zur Überprüfung, ob die Eileiter durchlässig sind.

Pädiatrie

siehe Hauptartikel Miktionsurosonografie

Kontrastmittel in der Harnblase mit Reflux in den linken Harnleiter
Kontrastmittel im Nierenbecken der linken Niere

Um einen Rückfluss (Reflux) von Urin aus der Blase in die Niere auszuschließen: Diese Untersuchung, genannt Miktionsurosonografie (MUS), kann die bisher durchgeführte Röntgenuntersuchung mit Kontrastmittel (Miktionscystourogramm, MCU) ersetzen. Auf diese Weise ist also eine Refluxprüfung ohne Strahlenbelastung möglich. Da die empfindlichen Gonaden bei der Röntgenuntersuchung regelmäßig mit im Nutzstrahlenbündel liegen, ist dies ein großer Vorteil.

Um beim Jungen die Harnröhre mit darzustellen (da Jungen Harnröhrenklappen (Urethralklappen) haben können, Mädchen aber nicht), erfolgt die Erstuntersuchung beim Junge meist als klassisches MCU, Verlaufsuntersuchungen dann aber als MUS.

Mikrobläschen

Auf dem Markt befinden sich lungengängige und nicht-lungengängige Kontrastmittel, die aus Mikrobläschen („microbubbles“) bestehen und sich im Wesentlichen in ihrer Hülle und ihrem Gasinhalt unterscheiden. Sie sind etwa 1 bis 4 μm groß.

Im Ultraschallfeld beginnen Mikrobläschen zu oszillieren. Bei höheren Schalldrücken entstehen auch nichtlineare Schwingungen hoher Amplitude, die gut von Signalen des Gewebes getrennt werden können und es so ermöglichen, die Blutversorgung von Gewebe zu beobachten.

Einzelnachweise

  1. Soliman O.I.I.The use of contrast echocardiography for the detection of cardiac shunts Eur J Echocardiography (2007) 8, S2eS12
  2. Sicari R et al: Stress echocardiography expert consensus statement EJE (2008) 9, 415-437

Literatur

  • Albrecht, T et al: Ultraschall Med. 2004 Aug;25(4):249-56
  • Becher, H: Herz. 2002 May;27(3):201-16
  • Riccabona, M: Eur Radiol. 2003 Jul;13(7):1494-5
  • S. Tinkov, R. Bekeredjian, G. Winter, C. Coester: Microbubbles as ultrasound triggered drug carriers. In: J Pharm Sci 98, 2009, S. 1935–1961 PMID 18979536 (Review).
Gesundheitshinweis Bitte den Hinweis zu Gesundheitsthemen beachten!

Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Abdomen-Sonografie — Dieser Artikel erklärt die Ultraschallanwendung in der Human und Tiermedizin; zu dem Einsatz als Verfahren in der Werkstoffkunde siehe Ultraschallprüfung; zu der grafischen Darstellung eines akustischen Signals siehe Spektrogramm. „Sonographie“… …   Deutsch Wikipedia

  • B-Mode — Dieser Artikel erklärt die Ultraschallanwendung in der Human und Tiermedizin; zu dem Einsatz als Verfahren in der Werkstoffkunde siehe Ultraschallprüfung; zu der grafischen Darstellung eines akustischen Signals siehe Spektrogramm. „Sonographie“… …   Deutsch Wikipedia

  • Continuous-wave doppler — Dieser Artikel erklärt die Ultraschallanwendung in der Human und Tiermedizin; zu dem Einsatz als Verfahren in der Werkstoffkunde siehe Ultraschallprüfung; zu der grafischen Darstellung eines akustischen Signals siehe Spektrogramm. „Sonographie“… …   Deutsch Wikipedia

  • Doppler-Sonografie — Dieser Artikel erklärt die Ultraschallanwendung in der Human und Tiermedizin; zu dem Einsatz als Verfahren in der Werkstoffkunde siehe Ultraschallprüfung; zu der grafischen Darstellung eines akustischen Signals siehe Spektrogramm. „Sonographie“… …   Deutsch Wikipedia

  • Doppler-Sonographie — Dieser Artikel erklärt die Ultraschallanwendung in der Human und Tiermedizin; zu dem Einsatz als Verfahren in der Werkstoffkunde siehe Ultraschallprüfung; zu der grafischen Darstellung eines akustischen Signals siehe Spektrogramm. „Sonographie“… …   Deutsch Wikipedia

  • Dopplersonografie — Dieser Artikel erklärt die Ultraschallanwendung in der Human und Tiermedizin; zu dem Einsatz als Verfahren in der Werkstoffkunde siehe Ultraschallprüfung; zu der grafischen Darstellung eines akustischen Signals siehe Spektrogramm. „Sonographie“… …   Deutsch Wikipedia

  • Dopplersonographie — Dieser Artikel erklärt die Ultraschallanwendung in der Human und Tiermedizin; zu dem Einsatz als Verfahren in der Werkstoffkunde siehe Ultraschallprüfung; zu der grafischen Darstellung eines akustischen Signals siehe Spektrogramm. „Sonographie“… …   Deutsch Wikipedia

  • Duplexsonografie — Dieser Artikel erklärt die Ultraschallanwendung in der Human und Tiermedizin; zu dem Einsatz als Verfahren in der Werkstoffkunde siehe Ultraschallprüfung; zu der grafischen Darstellung eines akustischen Signals siehe Spektrogramm. „Sonographie“… …   Deutsch Wikipedia

  • Duplexsonographie — Dieser Artikel erklärt die Ultraschallanwendung in der Human und Tiermedizin; zu dem Einsatz als Verfahren in der Werkstoffkunde siehe Ultraschallprüfung; zu der grafischen Darstellung eines akustischen Signals siehe Spektrogramm. „Sonographie“… …   Deutsch Wikipedia

  • Echografie — Dieser Artikel erklärt die Ultraschallanwendung in der Human und Tiermedizin; zu dem Einsatz als Verfahren in der Werkstoffkunde siehe Ultraschallprüfung; zu der grafischen Darstellung eines akustischen Signals siehe Spektrogramm. „Sonographie“… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”