- Moulton-Ebene
-
Die Moulton-Ebene ist ein oft benutztes Beispiel für eine affine Ebene, in der der Satz von Desargues nicht gilt, also einer nichtdesargueschen Ebene. Damit liefern ihre Koordinaten zugleich ein Beispiel eines Ternärkörpers, der kein Schiefkörper ist. Sie wurde zuerst 1902 von dem amerikanischen Astronom Forest Ray Moulton beschrieben[1] und später nach ihm benannt.
Die Punkte der Moulton-Ebene sind die normalen Punkte der reellen Ebene und die Geraden sind die normalen Geraden der reellen Ebene mit der Ausnahme, dass Geraden mit negativer Steigung an der Y-Achse einen Knick haben, d.h. beim Passieren der Y-Achse ändert sich ihre Steigung: In der rechten Halbebene ist sie doppelt so groß wie in der linken Halbebene.
Inhaltsverzeichnis
Formale Definition
Wir definieren wie folgt als Inzidenzstruktur, wobei P die Menge der Punkte, G die Menge der Geraden und I die Inzidenzrelation „liegt auf“ bezeichnet:
wobei lediglich ein formales Symbol ist.
Die Inzidenzrelation ist für und (siehe Geradengleichung) definiert durch
Man kann leicht nachweisen, dass diese Inzidenzstruktur die Axiome einer affinen Ebene erfüllt, also insbesondere, dass durch zwei verschiedene Punkte genau eine Gerade geht und dass es zu einer Geraden durch einen vorgegebenen Punkt genau eine Parallele gibt.
Ungültigkeit des Satzes von Desargues
Man geht aus von einer Desargues-Konstellation aus zehn Punkten und zehn Geraden in der gewöhnlichen euklidischen Ebene wie in nebenstehender Abbildung und platziert sie derart, dass X als einziger der zehn Punkte eine negative x-Koordinate hat und nur eine der drei Geraden durch X eine negative Steigung hat (im Bild: die Gerade XBC). Geht man jetzt über zur Moulton-Ebene, so bleiben alle Inzidenzen erhalten bis auf die bei X, d.h. die (Moulton-)Geraden BC, B'C' und YZ schneiden sich nicht alle in einem Punkt. Somit hat der Satz von Desargues in der Moulton-Ebene keine allgemeine Gültigkeit.
Anwendungen
Die Moulton-Ebene stellt durch ihre Existenz einen Beweis dar, dass nicht-desarguessche affine Ebenen existieren und sogar dafür, dass affine Ebenen existieren, die keine affine Translationsebenen sind. Da man zu jeder affinen Ebene eine zugehörige projektive Ebene konstruieren kann (den projektiven Abschluss), ist damit auch die Existenz von nicht-desargueschen projektiven Ebenen gesichert und sogar die Existenz von projektiven Ebenen, die keine Moufangebenen sind. Da in PG(2,K) der Satz von Desargues gilt, bedeutet dies die Existenz projektiver Ebenen, die nicht zu PG(2,K) isomorph sind. Daraus folgt: Es können nicht alle projektiven Ebenen mit Hilfe der kanonischen Konstruktion aus 3-dimensionalen (Links-)Vektorräumen über einem (Schief-)Körper K beschrieben werden.
Literatur
- Moulton,F.R.: A simple non-desarguesian plane geometry: Trans. Amer. Math Soc. 3 (1902),192-195
- Beutelspacher, A/ Rosenbaum,U. : Projektive Geometrie: Vieweg (1992), S. 70-71
Einzelnachweise
- ↑ Forest Ray Moulton: A simple non-desarguesian plane geometry: Transactions of the American Mathematical Society 3, 1902,192-195
Wikimedia Foundation.