- Affine Ebene
-
Eine affine Ebene ist in der synthetischen Geometrie eine Punkte und Geraden umfassende Inzidenzstruktur, die im Wesentlichen durch zwei Forderungen charakterisiert ist, nämlich dass je zwei Punkte eine (eindeutige) Verbindungsgerade besitzen und dass es eindeutige parallele Geraden gibt. In der linearen Algebra und der analytischen Geometrie wird ein zwei-dimensionaler affiner Raum als affine Ebene bezeichnet. Der im vorliegenden Artikel beschrieben Begriff der synthetischen Geometrie verallgemeinert diesen bekannteren Begriff aus der linearen Algebra.
Eine affine Ebene, die nur endlich viele Punkte enthält, wird als endliche affine Ebene bezeichnet. Besonders für diese Ebenen ist der Begriff Ordnung der Ebene wichtig: Sie ist definiert als die Anzahl der Punkte auf einer und damit jeder Geraden der Ebene.
Jede affine Ebene lässt sich durch Einführung uneigentlicher Punkte und einer aus diesen bestehenden uneigentlichen Geraden zu einer projektiven Ebene erweitern. Umgekehrt entsteht aus einer projektiven Ebene durch Entfernung einer Geraden mit ihren Punkten eine affine Ebene. → Siehe auch projektives Koordinatensystem.
Jede affine Ebene kann durch die Zuordnung eines Koordinatenbereichs K koordinatisiert und durch zusätzliche Verknüpfungen, die sich aus den geometrischen Eigenschaften der Ebene in diesem Koordinatenbereich ergeben, algebraisiert werden. Eine affine Ebene im Sinne der linearen Algebra, also ein affiner Raum, dessen Vektorraum der Parallelverschiebungen ein zwei-dimensionaler Vektorraum über einem Körper ist, ergibt sich genau dann, wenn der Koordinatenbereich durch die geometrische Struktur isomorph zu eben diesem Körper wird. Diese Beschreibung der affinen Ebene mit Hilfe eines Koordinatenbereichs, bei dem der algebraische Begriff Körper verallgemeinert wird, und ein Überblick über die Strukturen, die sich bei Gültigkeit wichtiger Schließungssätze ergeben, findet sich im Hauptartikel Ternärkörper.
Andererseits kann man die Gruppe der Parallelverschiebungen in einer affinen Ebene untersuchen, was zu einer anderen Algebraisierung führt, bei der der Begriff Parallelverschiebung, der in der linearen Algebra durch einen Vektor beschrieben werden kann, zum Begriff der Translation führt. Dieser Zugang, der den koordinatenbezogenen Zugang ergänzt, wird im Hauptartikel Affine Translationsebene beschrieben.
Inhaltsverzeichnis
Definitionen
Eine Inzidenzstruktur , die aus einem Punktraum , einem Geradenraum und einer Inzidenzrelation zwischen diesen besteht, ist genau dann eine affine Ebene, wenn die folgenden Axiome gelten:
- Zwei verschiedene Punkte aus liegen auf genau einer Geraden aus .
- Es gilt das Parallelenpostulat, das heißt es gibt zu jeder Geraden und zu jedem Punkt , der nicht auf g liegt, genau eine weitere Gerade , die A enthält und keinen Punkt von g enthält.
- Es gibt drei verschiedene Punkte aus P (ein „Dreieck“), die nicht alle auf einer Geraden aus liegen.
Formalisiert lassen sich die drei Axiome notieren als:
- ,
- .
Parallelität
Die Relation (Parallelität) zwischen Geraden wird definiert durch:
- genau dann, wenn g = h oder wenn g und h keinen Schnittpunkt gemeinsam haben.
Die nach dem 2. Axiom eindeutig bestimmte Gerade h die durch einen bestimmten Punkt geht, wird als die Parallele zu g durch A bezeichnet und als notiert.
Diese Relation ist eine Äquivalenzrelation. Die Äquivalenzklasse der zu einer Geraden g parallelen Geraden wird als Parallelenschar und auch als die Richtung von g bezeichnet.
Sprechweisen
- Die nach dem 1. Axiom eindeutig bestimmte Gerade g, auf der zwei verschiedene Punkte A,B liegen, wird als Verbindungsgerade der Punkte bezeichnet und als AB, manchmal auch als notiert.
- Die Parallelenschar einer Geraden g wird als [g] notiert.
- Die durch eine Gerade g und einen beliebigen Punkt A eindeutig bestimmte Gerade , wird als die Parallele zu g durch A bezeichnet und als notiert.
Der herkömmliche Standpunkt, bei dem die Punktemenge und die Geradenmenge als zunächst unabhängige Mengen aufgefasst wurden, wird auch in der aktuelleren mathematischen Literatur noch öfter zugrundegelegt. In diesem Zusammenhang wird dann die Menge der Punkte, die auf einer Geraden g liegen, als Punktmenge der Geraden bezeichnet und häufig als notiert.
Da eine Gerade aber durch die Inzidenzrelation vollständig bestimmt ist, wird sie auch oft mit dieser Punktmenge identifiziert, womit die Relation überflüssig ist. Die Axiome werden dann als Eigenschaften der Geradenmenge , die eine Teilmenge der Potenzmenge der Punktmenge ist, beschrieben, die Rolle der Inzidenzrelation übernimmt dann die Elementrelation: ( genau dann, wenn ist).
Ordnung der affinen Ebene
Die Ordnung einer affinen Ebene wird definiert als die Mächtigkeit der Punktmenge auf einer Geraden g. Der Begriff ist unabhängig von der Geraden g, weil alle Geraden einer affinen Ebene (als Punktmengen) gleichmächtig sind, da zwei verschiedene Geraden immer durch eine bijektive Parallelprojektion aufeinander abgebildet werden können. Es gilt:
- Eine affine Ebene ist genau dann endlich, das heißt sie enthält nur endlich viele Punkte, wenn ihre Ordnung eine natürliche Zahl ist.
- Ist in diesem Fall n die Ordnung der Ebene, dann enthält sie n2 Punkte, Geraden, n + 1 Parallelenscharen und jede Parallelenschar enthält n Geraden.
- Enthält die affine Ebene unendlich viele Punkte, dann ist sie als Punktmenge zur Punktmenge jeder ihrer Geraden und zu jeder ihrer Parallelenscharen gleichmächtig. Die Anzahl ihrer Geraden und ihrer Parallelenscharen hat ebenfalls die Mächtigkeit der Ebene. → Siehe Cantors erstes Diagonalargument.
Beispiele
- Der zweidimensionale Vektorraum über den reellen Zahlen, wobei gilt, alle eindimensionalen affinen Unterräume umfasst und die Inzidenzrelation durch die Enthaltensrelation gegeben ist.
- Ebenso der zweidimensionale Vektorraum K2 über einem beliebigen Körper (oder auch: Schiefkörper) K. Jede affine Ebene, in der der Satz von Desargues gilt, ist isomorph zu einer affinen Ebene K2 über einem Schiefkörper K. Gilt in dieser Ebene dazu noch der Satz von Pappos (auch "Satz von Pappus-Pascal") so ist der Schiefkörper ein Körper (mit kommutativer Multiplikation).
Von besonderem Interesse haben sich die "nichtdesarguesschen" Ebenen erwiesen, in denen der Satz von Desargues nicht gilt. In ihnen hat man Koordinaten aus Ternärkörpern eingeführt, speziell aus Quasikörpern (auch Veblen-Wedderburn-Systeme genannt, mit nichtassoziativer Multiplikation) bzw. Fastkörpern (in denen von den beiden Distributivgesetzen nur eins gilt).
- Im Fall erhält man die kleinste affine Ebene. Sie besteht aus vier Punkten.
- Es gibt affine Ebenen mit endlich vielen, etwa n Punkten auf einer (und dann jeder) Geraden. Sie heißen von n-ter Ordnung oder auch von der Ordnung n. Zu jeder Primzahlpotenz q gibt es affine Ebenen der Ordnung q. Ob es affine Ebenen gibt, deren Ordnung keine Primzahlpotenz ist, ist ein ungelöstes Problem. Ein Teilresultat ist gegeben durch den Satz von Bruck und Ryser.
Dieser sagt folgendes aus: Lässt n bei Division durch 4 den Rest 1 oder 2 und ist n Ordnung einer affinen Ebene, so ist n Summe zweier Quadrate natürlicher Zahlen. Beispiele: 6 ist nicht Ordnung einer affinen Ebene. 10 ist nach dem Satz nicht ausgeschlossen.
Mit großem Computereinsatz wurde jedoch die Nichtexistenz einer affinen Ebene der Ordnung 10 gezeigt. Ungelöst ist die Existenzfrage z. B. für die Ordnungen 12, 15, 18, 20, 26, 34, 45,..., und ausgeschlossen ist die Existenz für n = 14, 21, 22, 30, 33, 38, 42, 46,....
- Die Abbildungen unten zeigen das Minimalmodell einer affinen Ebene (links) und seine projektive Erweiterung, das Minimalmodell einer projektiven Ebene.
kleinstes Modell einer affinen Ebene (AG(2,2)) AG(2,2) wird zu PG(2,2), der projektiven Fano-Ebene, durch Hinzunahme einer Geraden {5,6,7} erweitert Siehe auch
Literatur
- Günter Pickert: Projektive Ebenen. 2. Auflage. Springer, Berlin u.a. 1975, ISBN 3-540-07280-2.
- Daniel R. Hughes, Fred C. Piper: Projective Planes. Springer, Berlin u.a. 1973, ISBN 3-540-90044-6.
Weblinks
Wikimedia Foundation.