- Multivariates Verfahren
-
Mit Multivariaten Verfahren (Multivariate Analyse(methoden), Abk.: MVA) werden multivariat verteilte statistische Variablen untersucht. Man betrachtet hier nicht eine Variable isoliert (univariat verteilt), sondern das Zusammenwirken mehrerer Variablen zugleich, ihre Abhängigkeitsstruktur.
Inhaltsverzeichnis
Gliederung
Strukturprüfende Verfahren Skalenniveau der abhängigen Variable metrische unabhängige Variable nominale unabhängige Variable Metrische abhängige Variable Regressionsanalyse Varianzanalyse, Regression mit Dummies Nominale abhängige Variable Diskriminanzanalyse, Logistische Regression Kontingenzanalyse Multivariate Verfahren lassen sich gliedern in Strukturprüfende Verfahren und Strukturentdeckende Verfahren.
Strukturprüfende Verfahren sind:
- Regressionsanalyse
- Varianzanalyse
- Diskriminanzanalyse
- Kontingenzanalyse
- Logistische Regression (Logit-Modell)
- Strukturgleichungsmodelle
- Conjoint-Analyse
Strukturentdeckende Verfahren sind:
- Faktorenanalyse
- Clusteranalyse
- Multidimensionale Skalierung
- Korrespondenzanalyse
- Neuronale Netze
- Hauptkomponentenanalyse
Die klassischen Verfahren sind durchweg lineare Modelle, die besondere Anforderungen an die verwendeten Daten stellen. So sollten die Daten ausreißerfrei und nicht asymmetrisch verteilt sein. Bei Abweichen der Daten von der geforderten Struktur behilft man sich beispielsweise, indem man vorhandene Ausreißer entfernt oder die Daten einer nichtlinearen Transformation, etwa Logarithmieren unterzieht. Es existieren auch vielfach alternative Methoden, die iterativ gewonnene Lösungen ermöglichen.
Häufig verwendete Kriterien für eine optimale Lösung sind
- Distanzen zwischen Punkten in einem mehrdimensionalen Raum. Erwähnenswert ist hier vor allem die Mahalanobis-Distanz, die man grob vereinfacht als Quadrat der Euklidischen Distanz bezeichnen könnte.
- Varianzen, die minimiert bzw. maximiert werden. Die Varianz dient in der Informationstheorie als Maß für den Informationsgehalt von Daten.
Die manuelle Berechnung Multivariater Verfahren ist meistens sehr aufwändig. Daher erfuhren diese Methoden erst mit der Entwicklung der EDV ihren Aufschwung. Auch können häufig bei berechneten Ergebnissen nur wenig Angaben über zu Grunde liegende Wahrscheinlichkeitsverteilungen gemacht werden.
Beispiele
Beispiele für Verwendung von Multivariaten Verfahren:
- Um psychologische Profile zu erstellen und aufgrund von Vergleichen herauszufinden, wer der wahrscheinlichste Täter/Sprecher/Autor ist (Kriminologie, Sprachwissenschaft).
- Um den Text eines anonymen Autors zu vergleichen mit Texten von bekannten Autoren und den wahrscheinlichsten Autor zu finden (eine Spielart des zuerst genannten Punktes).
- Datenschürfung (data mining): Große Datenmengen in Datenbanken werden auf unbekannte Strukturen hin analysiert. Man erhofft sich hier Erkenntnisse über das Zusammenwirken verschiedener Aspekte, beispielsweise die Konsumausgaben von Kunden in Abhängigkeit vom sozialen Status durch Herausfinden von Ähnlichkeitsstrukturen.
- Entwicklung von sozialen Abstimmungsprozessen (Politische Soziologie) und der Einfluss einzelner Akteure darauf.
- Kreditwürdigkeitsprüfungen von Schuldnern (Diskriminanzanalyse).
- Bei der Wertpapieranalyse: Welche Unternehmenszahlen beeinflussen hauptsächlich die Ertragskraft eines Unternehmens? (Faktorenanalyse)
- Bei der Suche nach Ursachen für die Eiszeiten (Faktorenanalyse).
Literatur
- Ahrens, H; Läuter, J: Mehrdimensionale Varianzanalyse. Akademie-Verlag, Berlin, 1974, 1981.
- Atteslander, P; Cromm, J; Grabow, B: Methoden der empirischen Sozialforschung. 11. Aufl., Gruyter-Verlag, 2006, ISBN 3503097406 (Grundlagenwissen)
- Backhaus, K; Erichson, B; Plinke, R: Multivariate Analysemethoden. Eine anwendungsorientierte Einführung. 11. Aufl., Springer, Berlin 2006, ISBN 3-540-27870-2
- Coxon, APM; Davies, PM: The User's Guide to Multidimensional Scaling. Heinemann Educational Books, London 1982, ISBN 0435822519 und ISBN 0435822527
- Daly, F et al.: Elements of Statistics. FT Prentice Hall, Harlow 1994, ISBN 0201422786
- Fahrmeir, L; Tutz, G: Multivariate Statistical Modelling Based on Generalized Linear Models. 2nd ed., Springer, New York 2001, ISBN 0387951873
- Krzanowski, WJ: Principles of Multivariate Analysis, Oxford University Press, rev. ed. 2000.
- Mardia, KV; Kent, JT; Bibby, JM: Multivariate Analysis. (Probability and Mathematical Statistics). Elsevier Limited, 2006, ISBN 0124712525
- Tabachnick, B; Fidell, L: Using Multivariate Statistics, 5. Auflage, Allyn & Bacon, Boston 2006, ISBN 0205459382
Links
- Rößler, Irene / Ungerer, Albrecht: Formelsammlung zu den multivariaten Verfahren
- StatSoft, Inc. (2007). Electronic Statistics Textbook. Tulsa, OK: StatSoft. WEB: http://www.statsoft.com/textbook/stathome.html. - (englisch), sehr umfangreiche Darstellung der wichtigsten Multivariaten Analyseverfahren
Wikimedia Foundation.