- Produkt von Gruppen
-
Im mathematischen Teilgebiet der Gruppentheorie kommen verschiedene Produkte von Gruppen vor:
- Das direkte Produkt ist durch das kartesische Produkt der Trägermengen zusammen mit der komponentenweisen Verknüpfung gegeben.
- Das semidirekte Produkt ist eine Verallgemeinerung des direkten Produkts, wobei die eine Gruppe auf der zweiten operiert. Es kann auch als inneres semidirektes Produkt zwischen einem Normalteiler und einer Untergruppe einer gegebenen Gruppe realisiert sein.
- Das Kranzprodukt ist ein spezielles semidirektes Produkt.
- Das Komplexprodukt zweier Untergruppen einer gegebenen Gruppe ist durch paarweise Verknüpfung der Untergruppenelemente gegeben. Dieses Produkt ist allgemeiner auch für zwei beliebige Teilmengen der Gruppe sinnvoll.
- Das freie Produkt stellt das kategorielle Koprodukt in der Kategorie der Gruppen dar.
- Das amalgamierte Produkt ist eine Verallgemeinerung des freien Produkts, bei dem die Elemente einer gemeinsamen Untergruppe miteinander verschmolzen („amalgamiert“) werden.
Wikimedia Foundation.