Quadratwurzel aus 2

Quadratwurzel aus 2

Unter Wurzel 2 (Quadratwurzel aus 2) versteht man in der Mathematik diejenige positive Zahl, deren Quadrat die Zahl 2 ergibt, also die Zahl x > 0, für die x2 = 2 gilt. Diese Zahl ist eindeutig bestimmt, irrational und wird durch \sqrt2 dargestellt. Die ersten Stellen ihrer Dezimalbruchentwicklung sind: \sqrt2 = 1,414213562…

Inhaltsverzeichnis

Allgemeines

Irrationalität der Wurzel 2

Euklid von Alexandria

Die Quadratwurzel aus 2 ist wie die Kreiszahl (π) oder die eulersche Zahl irrational; im Gegensatz zu den beiden ist sie jedoch nicht transzendent, sondern algebraisch. Bereits um 500 v. Chr. war dem Griechen Hippasos von Metapont die Irrationalität bekannt. Der bekannteste Beweis dafür stammt von dem im 4. Jahrhundert v. Chr. lebenden Griechen Euklid. Er gilt als der erste bekannte Widerspruchsbeweis in der Geschichte der Mathematik. Auch der Grieche Platon soll einen Beweis geliefert haben.

Nachkommastellen der Wurzel 2

Da Wurzel 2 irrational ist, hat die Zahl in jedem Stellenwertsystem unendlich viele nichtperiodische Nachkommastellen und lässt sich deshalb auch im Dezimalsystem nur näherungsweise darstellen. Die ersten 100 dezimalen Nachkommastellen lauten:

\sqrt2 = 1,4142135623 7309504880 1688724209 6980785696 7187537694 8073176679 7379907324 7846210703 8850387534 3276415727 …

Kettenbruchentwicklung

Eine andere Möglichkeit, reelle Zahlen darzustellen, ist die Kettenbruchentwicklung. Die Kettenbruchdarstellung von Wurzel 2 ist – im Gegensatz zur Kreiszahl πperiodisch, denn Wurzel 2 ist eine quadratische Irrationalzahl. Für die n-te Wurzel aus 2 und für n > 2 trifft dies jedoch nicht zu.

\sqrt{2} = [1;\, 2,\, 2,\, 2,\, 2,\, 2,\, \ldots]

Geometrische Konstruktion von Wurzel 2

Quadrat mit Wurzel 2

Da irrationale Zahlen eine unendlich lange Dezimaldarstellung haben, ist es unmöglich, eine solche Zahl mit dem Lineal genau abzumessen. Es ist aber möglich, die Zahl \sqrt{2} mit Zirkel und Lineal zu konstruieren: Die Diagonale eines Quadrates ist \sqrt2 mal so lang wie seine Seitenlänge. Es reicht auch ein rechtwinkliges, gleichschenkliges Dreieck, bei dem die Katheten jeweils 1 Einheit lang sind. Die Länge der Hypotenuse beträgt dann \sqrt2 Einheiten. Um dies zu beweisen reicht der Satz des Pythagoras: Für die Länge x der Diagonale gilt x2 = 12 + 12.

Das genannte Dreieck ist auch der Beginn der Quadratwurzelspirale.

Geschichte der Wurzel 2

Bereits die alten Hochkulturen haben sich Gedanken über die Wurzel aus 2 gemacht. Die alten Inder schätzen \sqrt2 \approx \tfrac{577}{408} = 1,414215686…  . Diese Näherung stimmt auf fünf Nachkommastellen mit dem tatsächlichen Wert von \sqrt2 überein, die Abweichung beträgt nur +0,0001502 Prozent. Von ihrer Irrationalität wussten sie wahrscheinlich nichts. Die Babylonier wie auch die Sumerer schätzten um 1950 v. Chr. die Wurzel 2 umgerechnet noch auf 1,41. Aus der Zeit um 1800 v. Chr. ist von den Babyloniern eine weitere Näherung überliefert. Sie benutzten in ihrer Keilschrift ein Stellenwertsystem zur Basis 60 und berechneten die Näherung mit:

1\cdot 60^0 + 24\cdot 60^{-1} + 51\cdot 60^{-2} + 10\cdot 60^{-3} = \tfrac{30547}{21600} = 1,414212962…  [1]

Diese Näherung stimmt auf fünf Nachkommastellen mit dem tatsächlichen Wert von \sqrt{2} überein, die Abweichung beträgt nur -0,0000424 Prozent.

Um 500 v. Chr. entdeckte Hippasus aus Metapontum, ein Schüler von Pythagoras und Mitglied des Geheimbundes der Pythagoräer, dass das Verhältnis von Kantenlänge zu Diagonale am Pentagramm nicht mit ganzen Zahlen darzustellen ist. Er hat somit die erste irrationale Zahl (noch vor Pi) entdeckt. Die Pythagoräer, die ein auf rationale Zahlen gegründetes Weltbild hatten, sollen ihn darauf bei einer Seefahrt über Bord geworfen haben. Hippasos veröffentlichte jedoch zuvor seine Entdeckung.

Sonstiges

  • 1994 errechnete Robert Nemiroff die ersten fünf Millionen Nachkommastellen der Wurzel 2.[2]
  • Das Verhältnis der beiden Seitenlängen eines Blattes im DIN A-Format beträgt  \frac{1}{\sqrt{2}}  mit Rundung auf ganze Millimeter und entgegen verbreiteter Annahme nicht dem Goldenen Schnitt  \frac{1 + \sqrt{5}}{2} . Dadurch ist sichergestellt, dass bei Halbierung des Blattes entlang der längeren Seite wieder ein Blatt im DIN A-Format (mit um 1 erhöhter Nummerierung) entsteht.
  • Die Wurzel aus 2 ist das Frequenzverhältnis zweier Töne in der Musik bei gleichschwebender Stimmung, die einen Tritonus, also eine halbe Oktave bilden.

Merkhilfe für die ersten Nachkommastellen der Wurzel 2

Die ersten vier Zweierblöcke 14, 14, 21 und 35 der dezimalen Nachkommastellen von Wurzel 2 sind, aufgefasst als zweistellige Zahlen, alle durch sieben teilbar. Die vier darauffolgenden Ziffern lassen sich in die durch sieben teilbaren Blöcke 623 und 7 aufteilen.

Einzelnachweise

  1. http://www.do.nw.schule.de/mbr/2020/geschichte.htm
  2. http://antwrp.gsfc.nasa.gov/htmltest/gifcity/sqrt2.5mil

Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Quadratwurzel aus 3 — Wurzel 3 als Länge der Diagonale eines Würfels Wurzel 3 im Koordinatensystem Die Quadratwurzel aus 3 (geschrieben …   Deutsch Wikipedia

  • Quadratwurzel — Graph der Quadratwurzel Funktion …   Deutsch Wikipedia

  • Quadratwurzel — ◆ Qua|drat|wur|zel 〈f. 21; Math.〉 die Zahl b, deren zweite Potenz (b2) gleich a ist, b = √a ● die Quadratwurzel (aus einer Zahl) ziehen; die Quadratwurzel von neun ist drei ◆ Die Buchstabenfolge qua|dr... kann in Fremdwörtern auch quad|r...… …   Universal-Lexikon

  • Quadratwurzel von 2 — Unter Wurzel 2 (Quadratwurzel aus 2) versteht man in der Mathematik diejenige positive Zahl, deren Quadrat die Zahl 2 ergibt, also die Zahl x > 0, für die x2 = 2 gilt. Diese Zahl ist eindeutig bestimmt, irrational und wird durch dargestellt.… …   Deutsch Wikipedia

  • Quadratwurzel von 3 — Wurzel 3 als Länge der Diagonale eines Würfels Wurzel 3 im Koordinatensystem Die Quadratwurzel aus 3 (geschrieben …   Deutsch Wikipedia

  • Quadratwurzel — Quad·ra̲t·wur·zel die; Math; die ↑Wurzel (5) einer Zahl: (Die) Quadratwurzel aus fünfundzwanzig ist fünf (√25 = 5) …   Langenscheidt Großwörterbuch Deutsch als Fremdsprache

  • Quadratwurzel-Gesetz — Das Quadratwurzelgesetz von Penrose ist eine Methode zur Verteilung von Sitzen oder Stimmen, die man zum Beispiel auf Gremien anwenden kann, an denen verschiedene Länder beteiligt sind, die in Abstimmungen jeweils einheitlich (als Block) einem… …   Deutsch Wikipedia

  • Quadratwurzel-Methode — Das Quadratwurzelgesetz von Penrose ist eine Methode zur Verteilung von Sitzen oder Stimmen, die man zum Beispiel auf Gremien anwenden kann, an denen verschiedene Länder beteiligt sind, die in Abstimmungen jeweils einheitlich (als Block) einem… …   Deutsch Wikipedia

  • Wurzel aus 2 — Unter Wurzel 2 (Quadratwurzel aus 2) versteht man in der Mathematik diejenige positive Zahl, deren Quadrat die Zahl 2 ergibt, also die Zahl x > 0, für die x2 = 2 gilt. Diese Zahl ist eindeutig bestimmt, irrational und wird durch dargestellt.… …   Deutsch Wikipedia

  • Beweis der Irrationalität der Wurzel aus 2 bei Euklid — Neuzeitliches Phantasiebild Euklids Euklid überlieferte einen Beweis dafür, dass die Quadratwurzel von 2 irrational ist. Dies gilt als eine der wichtigsten Aussagen der Mathematik. Der unten angeführte Beweis stammt von Euklid aus Buch X der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”