- Auslöschung (Numerik)
-
Unter Auslöschung (engl. cancellation) versteht man in der Numerik den Verlust an Genauigkeit bei der Subtraktion fast gleichgroßer Gleitkommazahlen.
Inhaltsverzeichnis
Beispiele
Zahlenbeispiel
Will man die Zahlen a=2,345678 und b=2,346789 voneinander subtrahieren so erwartet man als Ergebnis
b-a=0,001111
Rechnet man allerdings mit 2 Nachkommastellen Genauigkeit so erhält man: und und somit als Ergebnis
b-a=0
Wünschenswert wäre es, bei dieser Rechnung 3 gültige Stellen (z.B. 1.11e-3 oder 0.00111) zu erhalten. Das berechnete Ergebnis enthält aber keine gültigen Stellen mehr. Dieser Effekt wird als Auslöschung bezeichnet.
Beispiel: Algorithmus des Archimedes zur Kreiszahlberechnung
Archimedes von Syrakus bewies, dass sich der Umfang eines Kreises zu seinem Durchmesser genauso verhält, wie die Fläche des Kreises zum Quadrat des Radius. Er nannte dieses (heute als Kreiszahl bezeichnete) Verhältnis noch nicht π, gab aber eine Anleitung, wie man sich mit Hilfe von ein- und umschriebenen Vielecken dem Verhältnis bis zu einer beliebig hohen Genauigkeit nähern kann, vermutlich eines der ältesten numerischen Verfahren der Geschichte. Und er führte die Berechnung bis zum 96-Eck mit dem folgenden Resultat durch:
Wie man dem Zahlenbeispiel entnehmen kann, hatte Archimedes keine Chance, beim 96-Eck die Auslöschung überhaupt nur wahrzunehmen.
In heutiger Sprache beginnt man mit direkt berechenbaren Seitenlängen sn = AB von in einem Einheitskreis (MA = MB = MC = 1) einbeschriebenen Vielecken, z. B. dem Zweieck s2 = 2, dem Dreieck , dem Viereck oder dem Sechseck s6 = 1.
Dann ist für Vielecke mit doppelter Eckenzahl deren Seitenlänge s2n = AC mit der Hilfsstrecke ρn = MS und zweimaliger Anwendung des Satzes von Pythagoras ( und ) leicht herleitbar:
Mit den vier Grundrechenarten und der Quadratwurzel kann man also beginnend mit dem Zweieck die Seitenlänge und den Umfang eines einbeschriebenen Vielecks und damit indirekt eine Näherung für π berechnen. In der Praxis ist das Ergebnis jedoch enttäuschend. Die folgende Tabelle zeigt beginnend mit n=2 den Abstand 1 − ρn der Seitenmitte S zum Kreisrand, die Seitenlängen sn des eingeschriebenen und des umschriebenen n-Ecks und deren Flächen an = nsnρn / 2 und An = nSn / 2, die beim Einheitskreis gegen π konvergieren sollten. Die Rechnung wurde in C mit double nach IEEE 754 und somit ca 15 Dezimalstellen durchgeführt. Die Zahlenwerte sind aber auch mit jedem Taschenrechner, der Quadratwurzeln beherrscht, nachvollziehbar:
n 1 − ρn sn Sn an An 2 1.000e+00 2.00e+00 Inf 0.00000000000000 Inf 4 2.929e-01 1.41e+00 2.00e+00 2.00000000000000 4.00000000000000 8 7.612e-02 7.65e-01 8.28e-01 2.82842712474619 3.31370849898476 16 1.921e-02 3.90e-01 3.98e-01 3.06146745892072 3.18259787807453 32 4.815e-03 1.96e-01 1.97e-01 3.12144515225805 3.15172490742926 64 1.205e-03 9.81e-02 9.83e-02 3.13654849054593 3.14411838524589 128 3.012e-04 4.91e-02 4.91e-02 3.14033115695474 3.14222362994244 256 7.530e-05 2.45e-02 2.45e-02 3.14127725093262 3.14175036916881 512 1.882e-05 1.23e-02 1.23e-02 3.14151380114509 3.14163208070397 1024 4.706e-06 6.14e-03 6.14e-03 3.14157294036989 3.14160251025961 2048 1.177e-06 3.07e-03 3.07e-03 3.14158772527060 3.14159511774302 4096 2.941e-07 1.53e-03 1.53e-03 3.14159142155216 3.14159326967027 8192 7.353e-08 7.67e-04 7.67e-04 3.14159234553025 3.14159280755978 1.638e+04 1.838e-08 3.83e-04 3.83e-04 3.14159257570956 3.14159269121694 3.277e+04 4.596e-09 1.92e-04 1.92e-04 3.14159264036917 3.14159266924601 6.554e+04 1.149e-09 9.59e-05 9.59e-05 3.14159264171161 3.14159264893082 1.311e+05 2.872e-10 4.79e-05 4.79e-05 3.14159260647332 3.14159260827812 2.621e+05 7.181e-11 2.40e-05 2.40e-05 3.14159291071407 3.14159291116527 5.243e+05 1.795e-11 1.20e-05 1.20e-05 3.14159169662728 3.14159169674009 1.049e+06 4.488e-12 5.99e-06 5.99e-06 3.14159655369072 3.14159655371892 2.097e+06 1.122e-12 3.00e-06 3.00e-06 3.14159655370129 3.14159655370834 4.194e+06 2.804e-13 1.50e-06 1.50e-06 3.14151884046467 3.14151884046643 8.389e+06 7.017e-14 7.49e-07 7.49e-07 3.14120796828205 3.14120796828249 1.678e+07 1.754e-14 3.75e-07 3.75e-07 3.14245127249408 3.14245127249419 3.355e+07 4.441e-15 1.87e-07 1.87e-07 3.14245127249412 3.14245127249415 6.711e+07 1.110e-15 9.42e-08 9.42e-08 3.16227766016838 3.16227766016838 1.342e+08 2.220e-16 4.71e-08 4.71e-08 3.16227766016838 3.16227766016838 2.684e+08 0.000e+00 2.11e-08 2.11e-08 2.82842712474619 2.82842712474619 5.369e+08 0.000e+00 0.00e+00 0.00e+00 0.00000000000000 0.00000000000000
Man erkennt deutlich am Anfang die Konvergenz gegen pi. Nach Erreichen etwa der halben Stellenzahl beim 32768-Eck macht sich jedoch die Auslöschung bei der Subtraktion der fast gleichgroßen Zahlen 2 und bemerkbar. Das Ergebnis wird jetzt wieder ungenauer und am Ende falsch (2-2.000...000xxx = 0).
In vielen Fällen, so auch hier, kann man die Auslöschung vermeiden, einfach indem man die betroffenen Subtraktionen vermeidet. Hier gelingt das mit einer Umformung der Formel in eine äquivalente Form ohne Subtraktion unter Anwendung von
mit
Es ergibt sich:
Natürlich ist es ein glücklicher Zufall, dass sich im Zähler die Subtraktion „weghebt“. Jetzt verläuft die Rechnung wie erwünscht:
n 1 − ρn sn Sn an An 2.000e+00 1.000e+00 2.00e+00 Inf 0.00000000000000 Inf 4.000e+00 2.929e-01 1.41e+00 2.00e+00 2.00000000000000 4.00000000000000 8.000e+00 7.612e-02 7.65e-01 8.28e-01 2.82842712474619 3.31370849898476 1.600e+01 1.921e-02 3.90e-01 3.98e-01 3.06146745892072 3.18259787807453 3.200e+01 4.815e-03 1.96e-01 1.97e-01 3.12144515225805 3.15172490742926 6.400e+01 1.205e-03 9.81e-02 9.83e-02 3.13654849054594 3.14411838524590 1.280e+02 3.012e-04 4.91e-02 4.91e-02 3.14033115695475 3.14222362994246 2.560e+02 7.530e-05 2.45e-02 2.45e-02 3.14127725093277 3.14175036916897 5.120e+02 1.882e-05 1.23e-02 1.23e-02 3.14151380114430 3.14163208070318 1.024e+03 4.706e-06 6.14e-03 6.14e-03 3.14157294036709 3.14160251025681 2.048e+03 1.177e-06 3.07e-03 3.07e-03 3.14158772527716 3.14159511774959 4.096e+03 2.941e-07 1.53e-03 1.53e-03 3.14159142151120 3.14159326962931 8.192e+03 7.353e-08 7.67e-04 7.67e-04 3.14159234557012 3.14159280759964 1.638e+04 1.838e-08 3.83e-04 3.83e-04 3.14159257658487 3.14159269209225 3.277e+04 4.596e-09 1.92e-04 1.92e-04 3.14159263433856 3.14159266321541 6.554e+04 1.149e-09 9.59e-05 9.59e-05 3.14159264877699 3.14159265599620 1.311e+05 2.872e-10 4.79e-05 4.79e-05 3.14159265238659 3.14159265419140 2.621e+05 7.181e-11 2.40e-05 2.40e-05 3.14159265328899 3.14159265374019 5.243e+05 1.795e-11 1.20e-05 1.20e-05 3.14159265351459 3.14159265362739 1.049e+06 4.488e-12 5.99e-06 5.99e-06 3.14159265357099 3.14159265359919 2.097e+06 1.122e-12 3.00e-06 3.00e-06 3.14159265358509 3.14159265359214 4.194e+06 2.804e-13 1.50e-06 1.50e-06 3.14159265358862 3.14159265359038 8.389e+06 7.017e-14 7.49e-07 7.49e-07 3.14159265358950 3.14159265358994 1.678e+07 1.754e-14 3.75e-07 3.75e-07 3.14159265358972 3.14159265358983 3.355e+07 4.441e-15 1.87e-07 1.87e-07 3.14159265358978 3.14159265358980 6.711e+07 1.110e-15 9.36e-08 9.36e-08 3.14159265358979 3.14159265358980 1.342e+08 2.220e-16 4.68e-08 4.68e-08 3.14159265358979 3.14159265358979 2.684e+08 0.000e+00 2.34e-08 2.34e-08 3.14159265358979 3.14159265358979
Schon bei dem 268435456-Eck erreicht man die volle Genauigkeit von knapp 16 Dezimalstellen. Das Abbruchsignal gibt die 0 in der zweiten Spalte.
Faustregel
Subtrahiert man zwei fast gleichgroße Zahlen, die in den ersten k Stellen übereinstimmen, so gehen im Ergebnis von den eigentlich möglichen p Stellen k verloren. Es sind also nur noch p − k Stellen vertrauenswürdig.
Differentialrechnung
Bei der numerischen Berechnung von Ableitungen durch Differenzenquotienten wie zum Beispiel
tritt bei zu kleinem h Auslöschung auf, da die Funktionswerte dann nahezu gleich sind.
Wikimedia Foundation.