Numerische Differentiation

Numerische Differentiation
Fehlerverhalten der numerischen Differentiation

In der Numerischen Mathematik bezeichnet man mit numerischer Differentiation die näherungsweise Berechnung der Ableitung aus gegebenen Funktionswerten, meist mittels eines Differenzenquotienten. Dies ist nötig, falls die Ableitungsfunktion nicht gegeben ist oder die Funktion selbst nur indirekt, beispielsweise über Messwerte, zur Verfügung steht. Im Gegensatz dazu wird beim automatischen Differenzieren der Code, der die betrachtete Funktion definiert, um eine Ableitungsfunktion erweitert.

Ist der Abstand (h) der Funktionswerte gering, so wäre bei beliebig genauer Rechnung die Näherung zunächst besser. Allerdings tritt bei der Berechnung mittels Gleitkommazahlen Auslöschung auf, weswegen das gewählte h von der Maschinengenauigkeit abhängige Schranken nicht unterschreiten darf.

Alternativ kann man auch differenzierbare Approximationen von Funktionen wie zum Beispiel kubische Splines verwenden. Ist man nicht am gesamten Funktionsverlauf, sondern nur an einzelnen Stellen interessiert, so existieren spezielle Formeln.

In praktischer Anwendung sind die Funktionswerte oft fehlerbehaftet. Daher werden zum Beispiel zur Kantendetektion Sobel-Operatoren verwendet, die gleichzeitig eine Glättung durchführen. Eine weitere Möglichkeit bietet die Verwendung von geglätteten Splines (auch Ausgleichssplines).

Differenzenquotient

Ein naheliegender Ansatz ist die Verwendung des Vorwärtsdifferenzenquotienten:

f'(x) = \frac{f(x+h)-f(x)}{h} + \mathcal O(h)

Dabei ist jedoch die Näherung im Vergleich zur Auslöschung relativ schlecht. Eine bessere Näherung erhält man durch Verwendung des zentralen Differenzenquotienten:

f'(x) = \frac{f(x+h)-f(x-h)}{2h} +\mathcal O(h^2)

Mittels lokaler Polynominterpolation lässt sich diese Näherung noch weiter verbessern. Für die O-Notation siehe Landau-Symbole.

Literatur

  • Hans Rudolf Schwarz, Numerische Mathematik, B.G. Teubner Stuttgart 1997
  • Martin Hanke-Bourgeois, Grundlagen der numerischen Mathematik und des wissenschaftlichen Rechnens, B.G. Teubner Stuttgart 2002

Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Automatische Differentiation — Das automatische Differenzieren bzw. Differenzieren von Algorithmen ist ein Verfahren der Informatik und angewandten Mathematik. Zu einer Funktion in mehreren Variablen, die als Prozedur in einer Programmiersprache oder als Berechnungsgraph… …   Deutsch Wikipedia

  • Backward Differentiation Formulas — Die BDF Verfahren (englisch Backward Differentiation Formulas) sind Mehrschrittverfahren zur numerischen Lösung von Anfangswertproblemen: Dabei wird für y(x) eine Näherungslösung an den Zwischenstellen xi berechnet: Die Verfahren wurden 1952 von… …   Deutsch Wikipedia

  • Differenzquotient — Der Differenzenquotient ist ein Begriff aus der Mathematik. Er beschreibt das Verhältnis der Veränderung einer Größe zu der Veränderung einer anderen, von der die erste abhängt. In der Analysis verwendet man Differenzenquotienten, um die… …   Deutsch Wikipedia

  • Finite-Differenz — Die Finite Differenzen Methode ist das einfachste numerische Verfahren zur Lösung gewöhnlicher und partieller Differentialgleichungen. Zunächst wird das Gebiet, für das die Gleichung gelten soll, in eine endliche (finite) Zahl von Gitterpunkten… …   Deutsch Wikipedia

  • Finite-Differenzen — Die Finite Differenzen Methode ist das einfachste numerische Verfahren zur Lösung gewöhnlicher und partieller Differentialgleichungen. Zunächst wird das Gebiet, für das die Gleichung gelten soll, in eine endliche (finite) Zahl von Gitterpunkten… …   Deutsch Wikipedia

  • Finite-Differenzen-Verfahren — Die Finite Differenzen Methode ist das einfachste numerische Verfahren zur Lösung gewöhnlicher und partieller Differentialgleichungen. Zunächst wird das Gebiet, für das die Gleichung gelten soll, in eine endliche (finite) Zahl von Gitterpunkten… …   Deutsch Wikipedia

  • Finite Differenzen — Die Finite Differenzen Methode ist das einfachste numerische Verfahren zur Lösung gewöhnlicher und partieller Differentialgleichungen. Zunächst wird das Gebiet, für das die Gleichung gelten soll, in eine endliche (finite) Zahl von Gitterpunkten… …   Deutsch Wikipedia

  • Rückwärtsdifferenzenquotient — Der Differenzenquotient ist ein Begriff aus der Mathematik. Er beschreibt das Verhältnis der Veränderung einer Größe zu der Veränderung einer anderen, von der die erste abhängt. In der Analysis verwendet man Differenzenquotienten, um die… …   Deutsch Wikipedia

  • Rückwärtsdifferenzquotient — Der Differenzenquotient ist ein Begriff aus der Mathematik. Er beschreibt das Verhältnis der Veränderung einer Größe zu der Veränderung einer anderen, von der die erste abhängt. In der Analysis verwendet man Differenzenquotienten, um die… …   Deutsch Wikipedia

  • Vorwärtsdifferenzenquotient — Der Differenzenquotient ist ein Begriff aus der Mathematik. Er beschreibt das Verhältnis der Veränderung einer Größe zu der Veränderung einer anderen, von der die erste abhängt. In der Analysis verwendet man Differenzenquotienten, um die… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”