Regulärer Ring

Regulärer Ring

Im mathematischen Teilgebiet der kommutativen Algebra versteht man unter einem regulären lokalen Ring einen noetherschen lokalen Ring, dessen maximales Ideal von d Elementen erzeugt werden kann, wenn d die Dimension des Ringes bezeichnet. Reguläre lokale Ringe beschreiben das Verhalten algebraisch-geometrischer Objekte in Punkten, in denen keine Singularitäten wie Spitzen oder Überkreuzungen vorliegen.

Dieser Artikel beschäftigt sich mit kommutativer Algebra. Insbesondere sind alle betrachteten Ringe kommutativ und haben ein Einselement. Für weitere Details siehe Kommutative Algebra.

Definition

Es sei A ein d-dimensionaler noetherscher lokaler Ring mit maximalem Ideal \mathfrak m und Restklassenkörper k. Dann heißt A regulär, wenn eine der folgenden äquivalenten Bedingungen erfüllt ist:

  • \mathfrak m kann von d Elementen erzeugt werden.
  • \dim_k\mathfrak m/\mathfrak m^2=d.

Ein beliebiger noetherscher Ring A heißt regulär, wenn alle seine lokalen Ringe regulär sind.

Eigenschaften

  • Reguläre lokale Ringe sind faktoriell.
  • Kriterium von Serre: Ein noetherscher lokaler Ring ist genau dann regulär, wenn seine globale Dimension endlich ist.
  • Aus dem Kriterium von Serre folgt: Lokalisierungen regulärer lokaler Ringe sind wieder regulär.

Beispiele

  • Artinsche lokale Ringe sind genau dann regulär, wenn sie Körper sind.

Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Regulärer lokaler Ring — Im mathematischen Teilgebiet der kommutativen Algebra versteht man unter einem regulären lokalen Ring einen noetherschen lokalen Ring, dessen maximales Ideal von d Elementen erzeugt werden kann, wenn d die Dimension des Ringes bezeichnet.… …   Deutsch Wikipedia

  • Ring Magdeburger Fußball-Vereine — Der Ring Magdeburger Fußball Vereine (RMFV) war ein lokaler Fußballverband in der Stadt Magdeburg. Der Verband wurde im Jahre 1897 gegründet. Sieben Vereine spielten eine Mischung aus Fußball mit und ohne Aufnehmen des Balles, also aus… …   Deutsch Wikipedia

  • Gaußscher Ring — Ein faktorieller Ring (auch ZPE Ring oder Gaußscher Ring) ist eine algebraische Struktur, und zwar ein Integritätsring, in dem jedes Element eine eindeutige Zerlegung in irreduzible Faktoren besitzt (Achtung: ein faktorieller Ring ist etwas… …   Deutsch Wikipedia

  • ZPE-Ring — Ein faktorieller Ring (auch ZPE Ring oder Gaußscher Ring) ist eine algebraische Struktur, und zwar ein Integritätsring, in dem jedes Element eine eindeutige Zerlegung in irreduzible Faktoren besitzt (Achtung: ein faktorieller Ring ist etwas… …   Deutsch Wikipedia

  • Elementarteilersatz — In der Algebra bezeichnet man Integritätsbereiche als Hauptidealringe oder Hauptidealbereiche, wenn jedes Ideal ein Hauptideal ist. Die wichtigsten Beispiele für Hauptidealringe sind der Ring der ganzen Zahlen sowie Polynomringe in einer… …   Deutsch Wikipedia

  • Hauptidealbereich — In der Algebra bezeichnet man Integritätsbereiche als Hauptidealringe oder Hauptidealbereiche, wenn jedes Ideal ein Hauptideal ist. Die wichtigsten Beispiele für Hauptidealringe sind der Ring der ganzen Zahlen sowie Polynomringe in einer… …   Deutsch Wikipedia

  • Hurwitzquaternion — Eine Hurwitzquaternion (oder Hurwitz Ganzzahl) in der Mathematik ist eine Quaternion, deren vier Koeffizienten entweder alle (rational )ganzzahlig oder alle halbzahlig (Hälften ungerader ganzer Zahlen) sind – Mischungen von Ganzzahlen und… …   Deutsch Wikipedia

  • Auflösbar — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Euklidisch — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Fehlstand — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”