Noetherscher Ring

Noetherscher Ring

In der Algebra werden bestimmte Strukturen (Ringe und Moduln) noethersch genannt, wenn sie keine unendliche Schachtelung von immer größeren Unterstrukturen enthalten können. Der Begriff ist nach der Mathematikerin Emmy Noether benannt.

Inhaltsverzeichnis

Noethersche Moduln

Es sei R ein unitärer Ring (d. h. ein Ring mit Einselement). Ein R-Linksmodul M heißt noethersch, wenn er eine der folgenden äquivalenten Bedingungen erfüllt:

  • Jeder Untermodul ist endlich erzeugt.
  • (Aufsteigende Kettenbedingung) Jede unendliche aufsteigende Kette
 N_1 \subseteq N_2 \subseteq N_3 \subseteq\dotsb
von Untermoduln wird stationär, d.h. es gibt einen Index n, so dass
 N_n = N_{n+1} = N_{n+2} = \dotsb
  • (Maximalbedingung für Untermoduln) Jede nichtleere Menge von R-Untermoduln von M hat ein maximales Element bezüglich Inklusion.

Noethersche Ringe

Ein Ring R heißt

  • linksnoethersch, wenn er als R-Linksmodul noethersch ist;
  • rechtsnoethersch, wenn er als R-Rechtsmodul noethersch ist;
  • noethersch, wenn er links- und rechtsnoethersch ist.

Bei kommutativen Ringen sind alle drei Begriffe identisch und äquivalent dazu, dass alle Ideale in R endlich erzeugt sind.

Eigenschaften und Beispiele

  • Ist R linksnoethersch, das Jacobson-Radikal J=\operatorname{Rad}(R) nilpotent und R / J halbeinfach, dann ist R auch linksartinsch.
  • Endlich erzeugte Moduln über noetherschen Ringen sind noethersch. Die endlich erzeugten Moduln über einem noetherschen Ring bilden eine abelsche Kategorie; die Voraussetzung, dass der Ring noethersch ist, ist dabei essentiell.
  • Quotienten und Lokalisierungen noetherscher Ringe sind noethersch.
  • Ist R ein noetherscher Ring, so ist auch der Polynomring R[X] noethersch (Hilbertscher Basissatz).
  • Daraus folgt, dass allgemein endlich erzeugte Algebren über einem noetherschen Ring wieder noethersch sind. Insbesondere sind endlich erzeugte Algebren über Körpern noethersch.
  • Hauptidealringe oder allgemeiner Dedekindringe sind noethersch.
  • Der Polynomring \Bbb C[X_1, X_2, \ldots] in unendlich vielen Unbestimmten ist nicht noethersch, da das Ideal, das von allen Unbestimmten erzeugt wird, nicht endlich erzeugt ist.
  • Der Matrizenring  \begin{pmatrix} 
    \Z & \mathbb{Q} \\ 
    0 & \mathbb{Q}  
  \end{pmatrix} 
   ist rechtsnoethersch, aber weder linksartinsch noch linksnoethersch.
  • Ist M ein R-Linksmodul und  M' \subset M ein Untermodul, so ist M noethersch genau dann, wenn sowohl M' als auch M/M' noethersch sind.

Siehe auch

Literatur

  • Nicolas Bourbaki: Algèbre commutative. Band 8/9: Chapitre 8: Dimension. Chapitre 9: Anneaux locaux noethériens complets. Masson, Paris 1983, ISBN 2-225-78716-6 (Éléments de Mathématique).
  • David Eisenbud: Commutative Algebra with a View Toward Algebraic Geometry. Corrected 3rd printing. Springer-Verlag, New York NY 1999, ISBN 0-387-94268-8 (Graduate Texts in Mathematics 150), (engl.).

Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • noetherscher Ring —   [ nø ; nach A. E. Noether], ein kommutativer Ring R mit eins, der eine der beiden nachfolgenden äquivalenten Bedingungen erfüllt: 1) Jedes Ideal I in R wird von endlich vielen Elementen erzeugt, d. h., jedes Element a ∈ I lässt sich in der Form …   Universal-Lexikon

  • Noetherscher Modul — In der Algebra werden bestimmte Strukturen (Ringe und Moduln) noethersch genannt, wenn sie keine unendliche Schachtelung von immer größeren Unterstrukturen enthalten können. Der Begriff ist nach der Mathematikerin Emmy Noether benannt.… …   Deutsch Wikipedia

  • Noetherscher Raum — Der Noethersche topologischer Raum, benannt nach Emmy Noether, ist ein mathematischer Begriff aus dem Teilgebiet der Topologie. Er ist durch den algebraischen Begriff des noetherschen Rings motiviert und findet hauptsächlich in der algebraischen… …   Deutsch Wikipedia

  • Kommutativer Ring — Ring berührt die Spezialgebiete Mathematik Abstrakte Algebra Gruppentheorie Zahlentheorie ist Spezialfall von additive Abelsche Gruppe multiplikative Halbgruppe …   Deutsch Wikipedia

  • Unitärer Ring — Ring berührt die Spezialgebiete Mathematik Abstrakte Algebra Gruppentheorie Zahlentheorie ist Spezialfall von additive Abelsche Gruppe multiplikative Halbgruppe …   Deutsch Wikipedia

  • Regulärer Ring — Im mathematischen Teilgebiet der kommutativen Algebra versteht man unter einem regulären lokalen Ring einen noetherschen lokalen Ring, dessen maximales Ideal von d Elementen erzeugt werden kann, wenn d die Dimension des Ringes bezeichnet.… …   Deutsch Wikipedia

  • Regulärer lokaler Ring — Im mathematischen Teilgebiet der kommutativen Algebra versteht man unter einem regulären lokalen Ring einen noetherschen lokalen Ring, dessen maximales Ideal von d Elementen erzeugt werden kann, wenn d die Dimension des Ringes bezeichnet.… …   Deutsch Wikipedia

  • Dedekind-Ring — Ein Dedekindring (nach Richard Dedekind, auch ZPI Ring) ist eine Verallgemeinerung des Ringes der ganzen Zahlen. Die Anwendungen dieses Begriffes finden sich hauptsächlich in den mathematischen Teilgebieten der algebraischen Zahlentheorie und der …   Deutsch Wikipedia

  • ZPI-Ring — Ein Dedekindring (nach Richard Dedekind, auch ZPI Ring) ist eine Verallgemeinerung des Ringes der ganzen Zahlen. Die Anwendungen dieses Begriffes finden sich hauptsächlich in den mathematischen Teilgebieten der algebraischen Zahlentheorie und der …   Deutsch Wikipedia

  • Kommutativer Ringe — Ring berührt die Spezialgebiete Mathematik Abstrakte Algebra Gruppentheorie Zahlentheorie ist Spezialfall von additive Abelsche Gruppe multiplikative Halbgruppe …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”