Relativistischer Effekt

Relativistischer Effekt

Der Relativistische Effekt beschreibt in der physikalischen Chemie Eigenschaften schwerer Atome, die nur durch Anwendung der relativistischen Quantenmechanik erklärbar sind. Paradebeispiel hierfür ist der markante Farbunterschied von Silber und Gold. Aber auch der flüssige Aggregatzustand von Quecksilber kann durch den relativistischen Effekt erklärt werden. Der Effekt wirkt sich vor allem bei schweren Atomen aus. Eine Konsequenz des relativistischen Effekts ist, dass die Zuordnung künstlicher chemischer Elemente (mit hoher Ordnungszahl) zu den Gruppen des Periodensystems unsicher wird. Beispielsweise wurde diskutiert, ob Copernicium Edelgaseigenschaften besitzt.

Der relativistische Effekt erklärt auch den „Effekt des inerten Elektronenpaares“ (Inert-Pair-Effekt), weil das äußerste Elektronenpaar im Valenz-S-Orbital anscheinend inert ist.

Inhaltsverzeichnis

Theoretische Betrachtung

Bei den schweren Elementen ab der 6. Periode des Periodensystems haben die Elektronen in der Nähe des Atomkerns Geschwindigkeiten, die nur knapp unter der Lichtgeschwindigkeit liegen. Dadurch bedingt, nimmt ihre Masse zu (relativistischer Massezuwachs). Die erhöhte Masse wiederum führt zu einer Kontraktion der s-Orbitale (und einiger p-Orbitale). Infolgedessen schirmen die Elektronen die Kernladung besser ab, und die Energieniveaus der übrigen Orbitale werden angehoben.

Mathematisch muss man den nichtrelativistischen Hamilton-Operator gegen einen relativistischen ersetzen. Dies gelingt bei Atomen relativ gut mit der Diracgleichung anstelle der Schrödingergleichung. Bei den leichteren Elementen überwiegen Terme wie die Breit-Korrektur für die Elektron-Elektron-Wechselwirkung und die Quantenelektrodynamik (QED) der Vakuumpolarisation und Vakuumfluktuation. Ungefähr ab der Ordnungszahl 50 spielt letzterer Term keine Rolle mehr, da die Vakuumpolarisation und die Vakuumfluktuation fast dieselben Werte annehmen. Innerhalb einer Gruppe des Periodensystems nimmt der Term für relativistische Effekte mit Z2 zu und erreicht in der 6. Periode eine nicht mehr zu vernachlässigende Größe. Daher müssen sie für Elemente ab Caesium (Ordnungszahl 55) Beachtung finden.

Bei den Elementen der 5. Periode des Periodensystems spielt die Lanthanoidenkontraktion eine entscheidende Rolle, um das Verhalten zu beschreiben. Nach dieser müssten allerdings die s- und d-Energieniveaus vom Silber und Gold etwa gleich hoch sein. Beobachtet wird jedoch beim Gold eine Kontraktion des 6s- und eine Expansion des 5d-Niveaus. Beim Copernicium (Ordnungszahl 112) ist dieser Effekt noch ausgeprägter; möglicherweise ist der Niveauunterschied zwischen den 6d und den 8p-Elektronen so groß, dass Copernicium Edelgascharakter besitzt.

Beispiele

Im nichtrelativistischen Fall wären die 5d- und 6s-Energieniveaus von Silber und Gold ähnlich. Durch den relativistischen Effekt werden die 6s-Niveaus jedoch kontrahiert und die 5d-Niveaus expandiert. Es entsteht eine Energiedifferenz, die der Wellenlänge von blauem Licht entspricht (blaues Licht wird absorbiert, übrig bleibt die bekannte goldgelbe Farbe). Gleichzeitig werden die Bindungslängen in Goldverbindungen verkürzt (um ca. 20 pm beim Gold-Dimer). Beim Element Röntgenium ist dieser Effekt vermutlich noch stärker ausgeprägt.

Die Neigung schwerer Elemente, Oxide zu bilden, folgt nicht den erwarteten Eigenschaften. So ist PbO die stabilste Sauerstoffverbindung des Bleis, während Silizium, Germanium und Zinn stabile Dioxide der Form MeO2 bilden. Ebenfalls ist kein stabiles Bismut(V)-oxid bekannt, von Phosphor, Arsen und Antimon aber schon.

Literatur

P. Pyykkö: Relativistic theory of atoms and molecules. A bibliography 1916-1985, Lecture Notes in Chemistry, No. 41, 389 p. Springer-Verlag, Berlin-Heidelberg-New York (1986). ISBN 3-540-17167-3.

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • relativistischer Effekt — reliatyvistinis reiškinys statusas T sritis fizika atitikmenys: angl. relativistic phenomenon vok. relativistischer Effekt, m rus. релятивистский эффект, m pranc. phénomène relativiste, m …   Fizikos terminų žodynas

  • Effekt des inerten Elektronenpaares — Der Effekt des inerten Elektronenpaares oder Inert Pair Effect ist ein relativistischer Effekt, der die bevorzugte Bildung von Ionen mit zwei Oxidationsstufen unterhalb der zu erwartenden beschreibt. Dies geschieht bei Elementen mit p Elektronen… …   Deutsch Wikipedia

  • Inert-Pair-Effekt — Der Inert Pair Effekt ist ein relativistischer Effekt, der die bevorzugte Bildung von Ionen mit zwei Oxidationsstufen unterhalb der zu erwartenden beschreibt. Dies geschieht bei Elementen mit p Elektronen ab der 3. Hauptgruppe. Ab der 4. Periode… …   Deutsch Wikipedia

  • Doppler-Effekt — Frequenzänderung durch Dopplereffekt Frequenzänderung bei einem sich bewegenden Objekt Als Dopplereffekt (auch Doppler Effekt) bezeichnet man die Veränderung der wahrgenommenen oder gemessenen …   Deutsch Wikipedia

  • Optischer Doppler-Effekt — Frequenzänderung durch Dopplereffekt Frequenzänderung bei einem sich bewegenden Objekt Als Dopplereffekt (auch Doppler Effekt) bezeichnet man die Veränderung der wahrgenommenen oder gemessenen …   Deutsch Wikipedia

  • Compton-Effekt — Feynman Diagramme s Kanal u Kanal Als Compton Effekt bezeichnet man die Vergrößerung der Wellenlänge eines Photons bei der …   Deutsch Wikipedia

  • Inverser Compton-Effekt — Feynman Diagramme s Kanal u Kanal Als Compton Effekt bezeichnet man die Vergrößerung der Wellenlänge eines Photons bei der …   Deutsch Wikipedia

  • Blei-Ionen-Nachweis — Eigenschaften …   Deutsch Wikipedia

  • Bleierz — Eigenschaften …   Deutsch Wikipedia

  • Plumbum — Eigenschaften …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”