Renormierung

Renormierung

Unter Renormierung einer Feldtheorie versteht man die Festlegung einer Energieskala, in Bezug auf welche die Theorie formuliert wird.

Obwohl Renormierung auch bei klassischen Feldtheorien möglich (und sinnvoll) ist, ist sie speziell bei Quantenfeldtheorien unumgänglich, da ansonsten unendliche (divergente) Ausdrücke auftreten. Die physikalische Ursache dieser Divergenzen besteht darin, dass die Störungsentwicklung wechselwirkender Quantenfeldtheorien effektive Theorien sind, die nur innerhalb eines gewissen Energiebereichs gültig sind. Dieser Energiebereich kann zwar sehr groß sein, ist aber auf jeden Fall endlich. Bei der mathematischen Ausarbeitung der Theorie tragen – methodenbedingt – auch Energien außerhalb des Gültigkeitsbereichs bei, die dann unsinnige (unendliche) Ergebnisse liefern. Der mathematische Grund dieser Divergenzen ist, dass die Feldoperatoren Distributionen sind, deren Multiplikation am selben Raumzeitpunkt im Rahmen einer Reihenentwicklung im allgemeinen undefiniert ist.

Im Zuge der Renormierung der Theorie wird eine Energieskala eingeführt und Beiträge innerhalb und außerhalb dieser Skala getrennt; für diesen als Regularisierung bezeichneten Zwischenschritt gibt es technisch mehrere Möglichkeiten, die jedoch alle bezüglich der physikalischen Auswirkungen äquivalent sind. Wie sich herausstellt, lassen sich alle Effekte, die von Energien außerhalb der betrachteten Energieskala herrühren, pauschal durch die Redefinition der Parameter der Theorie, wie der Masse oder von Kopplungskonstanten, berücksichtigen. Zu diesen Konstanten treten Strahlungskorrekturen auf, die umso größer werden, je weiter die betrachtete Energie von der eingeführten Energieskala abweicht. Wenn eine endliche Anzahl von redefinierten Parametern ausreicht, bezeichnet man die Theorie als renormierbar. In vier Raumzeit-Dimensionen ist die Massendimension der Lagrangedichte vier. In vier Dimensionen lässt sich allgemein zeigen, dass eine Quantenfeldtheorie nur dann renormierbar ist, wenn die Kopplungskonstanten in den Wechselwirkungstermen keine negative Massendimension haben.

Die Wahl der Energieskala ist rein willkürlich, aber obwohl sich für jede Energieskala andere Parameter und andere Strahlungskorrekturen ergeben, sind die physikalischen Vorhersagen identisch. Die Theorie wurde nur auf einen Energiewert normiert, insofern erklärt sich die Bezeichnung Renormierung. In der praktischen Anwendung wählt man selbstverständlich die Energieskala, die dem betrachteten Bereich entspricht.

Eine der wichtigsten neuen Erkenntnisse im Rahmen der Entwicklung der Renormierungsgruppe besagt, dass einige Naturkonstanten, nämlich die Kopplungskonstanten und Teilchenmassen, nicht konstant sind, sondern ihre Werte immer in Bezug auf eine bestimmte Energieskala zu verstehen sind. So nimmt z.B. die Elementarladung bei hohen Energien zu. Umgekehrt nimmt die Kopplung der starken Kernkraft bei hohen Energien ab, was als asymptotische Freiheit bezeichnet wird.

Die Kopplungskonstanten werden durch die Renormierung nur auf die gemessenen Werte für die Referenzenergie festgelegt. Viele Bemühungen der modernen theoretischen Physik zielen daher darauf, diese Parameter im Rahmen einer übergeordneten Theorie mit erweitertem Gültigkeitsbereich berechnen bzw. ableiten zu können.

Die Symmetrien der Lagrangedichte einer Quantenfeldtheorie und die dazugehörigen Ward-Identitäten können dazu führen, dass verschiedene Renormierungskonstanten gleich sind. Das führt dazu, dass bestimmte auftretende Divergenzen sich gegenseitig aufheben und damit die Renormierbarkeit der Theorie gewährleistet wird.

In der axiomatischen Quantenfeldtheorie gibt es mit der kausalen Störungstheorie ebenfalls eine mathematisch wohldefinierte Renormierungsprozedur. Explizite Rechnungen sind in diesem Formalismus jedoch sehr kompliziert durchzuführen, weshalb er vor allem als mathematische Untermauerung der Renormierungstheorie aufgefasst, aber kaum für Rechnungen herangezogen wird.

Eine störungstheoretische Entwicklung der Einstein-Hilbert-Wirkung der allgemeinen Relativitätstheorie ist mit den bisher (2011) bekannten Methoden nicht renormierbar. Dies macht es unmöglich die Gravitation im Rahmen der Quantenfeldtheorie wie die anderen Grundkräfte zu behandeln und ist ein Grund dafür, dass bisher keine allgemein anerkannte Theorie der Quantengravitation existiert.


Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Renormierung — Renormierung,   Renormalisierung, formales Verfahren der Quantenfeldtheorie zur Korrektur bestimmter Größen wie Masse und Ladung eines Teilchens, die bei der Wechselwirkung von Feldern notwendig wird. Sind diese Korrekturen endlich, führen sie zu …   Universal-Lexikon

  • Renormierung — Re|nor|mie|rung die; , en <zu ↑re... u. ↑Normierung> Verfahren in der Quantenfeldtheorie, das zur mathematischen Behandlung auftretender Divergenzen verwendet wird (Math., Phys.) …   Das große Fremdwörterbuch

  • Kopplungsstärke — Als Kopplungskonstante α wird in der Physik eine dimensionslose Größe (also eine reine Zahl) für die Stärke einer Wechselwirkung bezeichnet. Die Kopplungskonstanten haben eine spezielle Bedeutung in (speziell )relativistischen Quantentheorien.… …   Deutsch Wikipedia

  • Quantenfeldtheorie — Dieser Artikel wurde den Mitarbeitern der Redaktion Physik zur Qualitätssicherung aufgetragen. Wenn Du Dich mit dem Thema auskennst, bist Du herzlich eingeladen, Dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der… …   Deutsch Wikipedia

  • Relativistische Quantenfeldtheorie — Eine Quantenfeldtheorie (QFT) kombiniert Prinzipien klassischer Feldtheorien (zum Beispiel der Elektrodynamik) und der Quantenmechanik zur Bildung einer erweiterten Theorie. Quantenfeldtheorien gehen über die Quantenmechanik hinaus, indem sie… …   Deutsch Wikipedia

  • Renormierbarkeit — Unter Renormierung einer Feldtheorie versteht man die Festlegung einer Energieskala, in Bezug auf welche die Theorie formuliert wird. Obwohl Renormierung auch bei klassischen Feldtheorien möglich (und sinnvoll) ist, ist sie speziell bei… …   Deutsch Wikipedia

  • Physiknobelpreis 1982: Kenneth Geddes Wilson —   Der amerikanische Physiker erhielt den Nobelpreis »für seine Theorie über kritische Phänomene bei Phasenumwandlungen«.    Biografie   Kenneth Geddes Wilson, * Waltham (Massachusetts) 8. 6. 1936; ab 1971 Professor an der Cornell University in… …   Universal-Lexikon

  • Dancoff — Sidney Michael Dancoff (* 27. September 1913 in Philadelphia; † 15. August 1951 in Urbana (Illinois))[1] war ein US amerikanischer theoretischer Physiker. Dancoff promovierte 1936 bei Robert Oppenheimer in Berkeley. Bei Berechnungen der… …   Deutsch Wikipedia

  • E. C. G. Stueckelberg — Ernst Carl Gerlach Stückelberg (* 1. Februar 1905 in Basel; † 4. September 1984 ebenda) war ein Schweizer Mathematiker und Physiker. Er wurde als Sohn des Advokaten Alfred Stückelberg und der Alice geb. von Breidenbach in Basel geboren und auf… …   Deutsch Wikipedia

  • Ernst Carl Gerlach Stueckelberg — Ernst Carl Gerlach Stückelberg (* 1. Februar 1905 in Basel; † 4. September 1984 ebenda) war ein Schweizer Mathematiker und Physiker. Er wurde als Sohn des Advokaten Alfred Stückelberg und der Alice geb. von Breidenbach in Basel geboren und auf… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”