Satz vom abgeschlossenen Graphen
Schlagen Sie auch in anderen Wörterbüchern nach:
Satz vom Minimum und Maximum — Die Stetigkeit ist ein Konzept der Mathematik, das vor allem in den Teilgebieten der Analysis und der Topologie von zentraler Bedeutung ist. Eine Funktion heißt stetig, wenn verschwindend kleine Änderungen des Argumentes (der Argumente) nur zu… … Deutsch Wikipedia
Satz von Hellinger-Toeplitz — Der Satz von Hellinger Toeplitz ist ein mathematischer Satz aus der Funktionalanalysis. Er ist nach den Mathematikern Ernst Hellinger und Otto Toeplitz benannt. Inhaltsverzeichnis 1 Formulierung 2 Beweis 3 Folgerungen … Deutsch Wikipedia
Liste mathematischer Sätze — Inhaltsverzeichnis A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Satz von Abel Ruffini: eine allgemeine Polynomgleichung vom … Deutsch Wikipedia
Webbed space — Räume mit Gewebe werden in der mathematischen Disziplin der Funktionalanalysis betrachtet. Sie erlauben im Zusammenspiel mit den ultrabornologischen Räumen Verallgemeinerungen zweier zentraler Sätze aus der Theorie der Banachräume, das sind der… … Deutsch Wikipedia
Raum mit Gewebe — Räume mit Gewebe werden in der mathematischen Disziplin der Funktionalanalysis betrachtet. Sie erlauben im Zusammenspiel mit den ultrabornologischen Räumen Verallgemeinerungen zweier zentraler Sätze aus der Theorie der Banachräume, das sind der… … Deutsch Wikipedia
Abschließbar — Abgeschlossene Operatoren werden in der Funktionalanalysis, einem Teilgebiet der Mathematik, betrachtet. Es handelt sich dabei um lineare Operatoren mit einer bestimmten topologischen Eigenschaft, die schwächer als Stetigkeit ist. Diese spielen… … Deutsch Wikipedia
Abschließbarer Operator — Abgeschlossene Operatoren werden in der Funktionalanalysis, einem Teilgebiet der Mathematik, betrachtet. Es handelt sich dabei um lineare Operatoren mit einer bestimmten topologischen Eigenschaft, die schwächer als Stetigkeit ist. Diese spielen… … Deutsch Wikipedia
(LB)-Raum — (LF) Räume sind eine in der Mathematik betrachtete Klasse von Vektorräumen. Abstrahiert man die Konstruktion gewisser Räume aus der Distributionstheorie, so wird man zwanglos auf den Begriff des (LF) Raums geführt. Dabei handelt es sich um die… … Deutsch Wikipedia
LB-Raum — (LF) Räume sind eine in der Mathematik betrachtete Klasse von Vektorräumen. Abstrahiert man die Konstruktion gewisser Räume aus der Distributionstheorie, so wird man zwanglos auf den Begriff des (LF) Raums geführt. Dabei handelt es sich um die… … Deutsch Wikipedia
LB Raum — (LF) Räume sind eine in der Mathematik betrachtete Klasse von Vektorräumen. Abstrahiert man die Konstruktion gewisser Räume aus der Distributionstheorie, so wird man zwanglos auf den Begriff des (LF) Raums geführt. Dabei handelt es sich um die… … Deutsch Wikipedia