Satz von Cantor-Bernstein

Satz von Cantor-Bernstein

In der Mengenlehre ist das Cantor-Bernstein-Schröder-Theorem (in der Literatur uneinheitlich auch als Satz von Cantor-Bernstein, als Äquivalenzsatz von Cantor-Bernstein oder auch als Satz von Schröder-Bernstein bezeichnet) eine Aussage über die Mächtigkeiten zweier Mengen. Es ist benannt nach den Mathematikern Georg Cantor, Felix Bernstein und Ernst Schröder und ist ein wichtiges Hilfsmittel beim Nachweis der Gleichmächtigkeit zweier Mengen.

Inhaltsverzeichnis

Satz

Das Cantor-Bernstein-Schröder-Theorem lautet:

Sei eine Menge A gleichmächtig zu einer Teilmenge einer Menge B, und sei B gleichmächtig zu einer Teilmenge von A. Dann sind A und B gleichmächtig.

Dabei heißen zwei Mengen gleichmächtig, wenn es eine bijektive Abbildung zwischen ihnen gibt. Ausgedrückt durch die Mächtigkeiten von A und B lautet das Theorem:

Aus |A| \le |B| und |B| \le |A| folgt | A | = | B | .

Dabei gilt | A | = | B | genau dann, wenn A und B gleichmächtig sind, und |A| \le |B| gilt genau dann, wenn A gleichmächtig zu einer Teilmenge von B ist, d.h. wenn es eine injektive Abbildung von A in B gibt. Ausgedrückt durch die Eigenschaften von Funktionen lautet das Theorem:

Seien A und B Mengen mit einer Injektion f: A \to B und einer Injektion g: B \to A. Dann existiert eine Bijektion h: A\to B.

Der Äquivalenzsatz wurde 1883 von Georg Cantor formuliert, aber erst 1897 von Felix Bernstein in einem von Cantor geleiteten Seminar und etwa gleichzeitig unabhängig von Ernst Schröder bewiesen.[1][2]

Beweisidee

Wir geben hier eine Beweisidee (zuerst gegeben von Eilenberg?).

Wir definieren die Mengen

 C_0 := A\setminus g(B)
 C_{n+1} := g(f(C_n))\quad \mbox{ für } n\ge 0
 C := \bigcup_{n=0}^\infty C_n

Für jedes x aus A setzen wir dann


  h(x) := \begin{cases}
    f(x) & \mbox{ falls } x\in C \\
    g^{-1}(x) & \mbox{ falls } x \not\in  C
  \end{cases}

Da im Falle, dass x nicht in C ist, x in g(B) liegen muss, gibt es ein eindeutig bestimmtes Element g-1(x) und h ist eine wohldefinierte Abbildung von A nach B.

Man kann nun zeigen, dass diese Funktion h: A -> B die gewünschte Bijektion ist.

Beachte, dass diese Definition von h nicht konstruktiv ist, d.h. es gibt kein Verfahren, um für beliebige Mengen A, B und Injektionen f, g in endlich vielen Schritten zu entscheiden, ob ein x aus A in C liegt oder nicht. Für spezielle Mengen und Abbildungen kann das natürlich möglich sein.

Veranschaulichung

Veranschaulichen kann man sich die Definition von h anhand der folgenden Darstellung.

Beispiel der Definition von h

Dargestellt sind Teile der (disjunkten) Mengen A und B sowie die Abbildungen f und g. Betrachtet man A vereinigt B als Graphen, dann zerfällt der Graph in verschiedene Zusammenhangskomponenten. Diese lassen sich in vier Typen einteilen: beidseitig unendliche Pfade; endliche Zyklen; unendliche Pfade, die in A beginnen; unendliche Pfade, die in B beginnen (von jedem Typ ist hier einer vertreten, da der Pfad durch das Element a beidseitig unendlich sein soll). Es ist aber allgemein nicht in endlich vielen Schritten entscheidbar, welchen Typ der durch ein vorgegebenen Element gehende Pfad hat.

Die oben definierte Menge C enthält nun genau die Elemente von A, die Teil eines in A beginnenden Pfades sind. Die Abbildung h wird so definiert, dass sie innerhalb einer jeden Zusammenhangskomponente eine Bijektion der A-Elemente auf "im Pfad benachbarte" B-Elemente herstellt (dabei hat man bei den beidseitig unendlichen Pfaden und den endlichen Zyklen eine Richtungswahl und wir legen uns auf "rückwärts" fest).

Ein kurzer und leicht verständlicher Beweis findet sich auch in dem Göschenbändchen "Mengenlehre" von Erich Kamke.

Siehe auch

Einzelnachweise

  1. Oliver Deiser: Einführung in die Mengenlehre. Berlin 2004. ISBN 3-540-20401-6
  2. Patrick Suppes: Axiomatic Set Theory. Dover Publications 1972. ISBN 0-486-61630-4

Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Satz von Schröder-Bernstein — In der Mengenlehre ist das Cantor Bernstein Schröder Theorem (in der Literatur uneinheitlich auch als Satz von Cantor Bernstein, als Äquivalenzsatz von Cantor Bernstein oder auch als Satz von Schröder Bernstein bezeichnet) eine Aussage über die… …   Deutsch Wikipedia

  • Cantor-Bernstein-Schröder-Theorem — In der Mengenlehre ist das Cantor Bernstein Schröder Theorem (in der Literatur uneinheitlich auch als Satz von Cantor Bernstein, als Äquivalenzsatz von Cantor Bernstein oder auch als Satz von Schröder Bernstein bezeichnet) eine Aussage über die… …   Deutsch Wikipedia

  • Theoreme de Cantor — Théorème de Cantor Le théorème de Cantor est un théorème mathématique, dans le domaine de la théorie des ensembles. Il énonce que le cardinal d un ensemble E est toujours strictement inférieur au cardinal de l ensemble des ses parties P(E), c est …   Wikipédia en Français

  • Théorème de cantor — Le théorème de Cantor est un théorème mathématique, dans le domaine de la théorie des ensembles. Il énonce que le cardinal d un ensemble E est toujours strictement inférieur au cardinal de l ensemble des ses parties P(E), c est à dire… …   Wikipédia en Français

  • Théorème de Cantor — Le théorème de Cantor est un théorème mathématique, dans le domaine de la théorie des ensembles. Il énonce que le cardinal d un ensemble E est toujours strictement inférieur au cardinal de l ensemble de ses parties P(E), c est à dire… …   Wikipédia en Français

  • Liste mathematischer Sätze — Inhaltsverzeichnis A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Satz von Abel Ruffini: eine allgemeine Polynomgleichung vom …   Deutsch Wikipedia

  • Aleph null — In der Mathematik verwendet man den aus der Mengenlehre von Cantor stammenden Begriff der Mächtigkeit oder Kardinalität, um den für endliche Mengen verwendeten Begriff der „Anzahl der Elemente einer Menge“ auf unendliche Mengen zu verallgemeinern …   Deutsch Wikipedia

  • Gleichmächtig — In der Mathematik verwendet man den aus der Mengenlehre von Cantor stammenden Begriff der Mächtigkeit oder Kardinalität, um den für endliche Mengen verwendeten Begriff der „Anzahl der Elemente einer Menge“ auf unendliche Mengen zu verallgemeinern …   Deutsch Wikipedia

  • Gleichmächtigkeit — In der Mathematik verwendet man den aus der Mengenlehre von Cantor stammenden Begriff der Mächtigkeit oder Kardinalität, um den für endliche Mengen verwendeten Begriff der „Anzahl der Elemente einer Menge“ auf unendliche Mengen zu verallgemeinern …   Deutsch Wikipedia

  • Höchstens gleichmächtig — In der Mathematik verwendet man den aus der Mengenlehre von Cantor stammenden Begriff der Mächtigkeit oder Kardinalität, um den für endliche Mengen verwendeten Begriff der „Anzahl der Elemente einer Menge“ auf unendliche Mengen zu verallgemeinern …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”