- Selbst-Ähnlichkeit
-
Selbstähnlichkeit im engeren Sinne ist die Eigenschaft von Gegenständen, Körpern, Mengen oder geometrischen Objekten, in größeren Maßstäben, d. h. bei Vergrößerung dieselben oder ähnliche Strukturen aufzuweisen wie im Anfangszustand. Diese Eigenschaft wird unter anderem von der fraktalen Geometrie untersucht, da fraktale Objekte eine hohe bzw. perfekte Selbstähnlichkeit aufweisen.
Im weiteren Sinne wird der Begriff auch in der Philosophie sowie den Sozial- und Naturwissenschaften verwendet, um grundsätzlich wiederkehrende, in sich selbst verschachtelte Strukturen zu bezeichnen.
Inhaltsverzeichnis
Fraktale Geometrie
Von exakter (oder strikter) Selbstähnlichkeit ist die Rede, wenn bei unendlicher Vergrößerung des untersuchten Objekts immer wieder die ursprüngliche Struktur erhalten wird, ohne jemals eine elementare Feinstruktur zu erhalten. Exakte Selbstähnlichkeit ist praktisch nur bei mathematisch (z. B. durch ein iteriertes Funktionen-System) erzeugten Objekten zu finden. Beispiele dafür sind das Sierpinski-Dreieck, die Koch-Kurve, die Cantor-Menge oder trivialerweise ein Punkt und eine Gerade.
Die Mandelbrot-Menge und die Julia-Mengen sind selbstähnlich, nicht jedoch strikt selbstähnlich. Strikte Selbstähnlichkeit impliziert Skaleninvarianz und lässt sich unter anderem mit Hilfe der charakteristischen Exponenten des zugrundeliegenden Potenzgesetzes (Skalengesetzes) quantifizieren.
Natur
Real existierende Beispiele wären z. B. die Verästelung von Blutgefäßen, Farnblättern oder Teilen eines Blumenkohls (insb. die Sorte Romanesco), die in einfacher Vergrößerung dem Blumenkohlkopf sehr ähnlich sind. Bei realen Beispielen lässt sich die Vergrößerung selbstverständlich nicht bis ins Unendliche fortsetzen, wie es bei idealen Objekten der Fall wäre.
Auch beliebigere Abbildungen der realen Welt weisen Selbstähnlichkeiten auf, die z.B. bei der fraktalen Bildkompression oder der fraktalen Tonkompression genutzt werden.
Die Rekurrenzen bezeichnen den Aufruf oder die Definition einer Funktion durch sich selbst, die demzufolge selbstähnlich sind.
Die Selbstähnlichkeit ist ein Phänomen, das oft in der Natur auftritt. Eine kennzeichnende Zahl für die immer wiederkehrende Selbstähnlichkeit ist der Goldene Schnitt.
Auch die Trajektorien eines Wiener-Prozesses sind selbstähnlich.
Literatur
- Henning Fernau: Iterierte Funktionen, Sprachen und Fraktale, B. I. Wissenschaftsverlag, Mannheim - Wien - Zürich 1994.
Weblinks
Wikimedia Foundation.