Störstelle

Störstelle

Als Störstelle wird in der Festkörperphysik und Werkstoffwissenschaft ein Substitutionsatom (nulldimensionale Gitterfehler) in einem hochreinen Kristall bezeichnet, das heißt, sie sind eine Störung der regulären Kristallgitterstruktur.

Inhaltsverzeichnis

Donatoren und Akzeptoren

Wie bereits erwähnt erhöht das Vorhandensein von Störstellen (anderer Wertigkeit) die Leitungseigenschaften von elektrischem Strom bei niedrigeren Temperaturen. Die Ursache dafür liegt in der Erzeugung von Zwischenniveaus in der Bandlücke des Halbleiters. Es werden dabei zwei Arten von Störstellen unterschieden: Donatoren und Akzeptoren.

Donatoratome (Phosphor) im Silicumkristallgitter und ihre Wirkung im Banddiagramm
Akzeptoratome (Bor) im Silicumkristallgitter und ihre Wirkung im Banddiagramm

Bezogen auf Elektronen werden Störstellen die ein Elektron mehr im Valenzband besitzen als der reine Halbleiter als (Elektronen-)Donatoren (lateinisch donare = schenken) bezeichnet. Werden solche Fremdatome in den Halbleiter substituiert, das heißt, mit den Halbleiteratomen ausgetauscht, so bringt jedes dieser Fremdatome (im Fall Phosphor und Silicium) ein Elektron mit, das nicht für die Bindung benötigt wird und leicht abgelöst werden kann. Es bildet sich ein Störstellenniveau in der Nähe der unteren Energiekante des Leitungsbandes (Donatorniveau). Entsprechend dotierte Bereiche des Halbleiters werden als n-dotiert bezeichnet.

Analog dazu werden als (Elektronen-)Akzeptoren (lat. accipere = annehmen) Fremdatome bezeichnet, die ein Elektron weniger im Valenzband haben. Dieses Elektron fehlt für die Bindung zum Nachbaratom. Sie wirken als ein zusätzliches Defektelektron (Loch), welches leicht von Valenzbandelektronen besetzt werden kann – daher findet sich auch einigen Betrachtungen der Begriff Löcherdonatoren. Im Bänderschema liegt ein solches Störstellenniveau nahe oberhalb der Valenzbandkante (Akzeptorniveau). Entsprechend dotierte Bereiche des Halbleiters werden als p-dotiert bezeichnet.

Auch wenn beide Dotierungsarten die Leitfähigkeit (fast gleich) erhöhen, sind die zugrundeliegenden Mechanismen recht unterschiedlich. Bei Donatoren werden mit der Erhöhung der Temperatur zunehmend Elektronen von den Donatorniveaus (ED)in das Leitungsband angeregt (hier ist die Energiedifferenz ΔED = ECED die kleinste „Energielücke“). Im Leitungsband stehen sie nun für den Ladungstransport zur Verfügung. Zurück bleiben ortsfeste positiv geladene Haftstellen (sozusagen ortsfeste Defektelektronen). Im Gegensatz dazu werden bei Akzeptoren Elektronen aus dem Valenzband in die ortsfesten Akzeptorniveaus angeregt und gebunden (hier ist die Energiedifferenz ΔEA = EAEV die kleinste „Energielücke“). Zurück bleiben „freibewegliche“ positive Ladungen (Defektelektronen), die im Valenzband für den Ladungstransport verantwortlich sind (sogenannte Majoritätsladungsträger).

Neben dieser zuvor beschrieben Unterscheidung, werden Störstellen auch hinsichtlich der Energieniveaulage in flache und tiefe Störstellen unterscheiden. Dabei besitzen flache Störstellen eine geringe Energiedifferenz, sie befinden sich daher je nach Störstellenart in der Nähe des Valenz- bzw. des Leistungsbands. Tiefe Störstellen, auch tiefe Zentren genannt, haben hingegen eine verhältnismäßig große Energiedifferenz, sie liegen im Bereich der Bandlückenmitte.

Je nach Materialkomposition kann eine Störstelle auch mehr als eine Haftstelle im Energieband erzeugen. Diese können sowohl als Donator- als auch als Akzeptorniveau wirken. Beispielsweise erzeugt Schwefel in einem Siliciumkristall ein Donatorniveau bei ED = 260 meV und ein Akzeptorniveau bei EA = 480 meV[1].

Energetischer Abstand ΔED und ΔEA für ausgewählte Halbleiter[1][2]
Kristallmaterial Bandabstand
in eV
(Donatoren)
ED in meV
(Akzeptoren)
EA in meV
P As Sb B Al Ga In
Si 1,12 45 54 39 45 67 74 160
Ge 0,67 12 12,7 9,6 10 10 10 11
  S Te Si Be Zn Cd Si
GaAs 1,42 6 30 5,8 28 31 35 35

Auswirkungen auf das Energiebändermodell

Zustandsdichten (farbig) in einem n-dotierten Halbleiter mit direktem Bandübergang. Energieniveau der Dotieratome ED.

Durch die zusätzlichen Energieniveaus ergibt sich eine Verschiebung der Zustandsdichte und somit des Fermi-Niveaus EF, das nach der Fermi-Dirac-Statistik mit der Besetzungswahrscheinlichkeit ½ besetzt ist. Für n-dotierte Halbleiter liegt das Fermi-Niveau somit zwischen dem intrinsischen Fermi-Niveau Ei und dem höher liegendem effektiven Donatorniveau {E_\mathrm{D}}^*:

E_\mathrm{i} \leq E_\mathrm{F}\leq {E_\mathrm{D}}^*

analog dazu verschiebt sich das Fermi-Niveau für p-dotierte Halbleiter zu niedrigeren Energien, denn die unbesetzten Akzeptorniveaus liegen unterhalb des Fermi-Niveaus. Das neue Fermi-Niveau liegt daher zwischen dem effektivem Akzeptorniveau {E_\mathrm{A}}^* und dem intrinsischen Fermi-Niveau Ei:

{E_\mathrm{A}}^* \leq E_\mathrm{F}\leq E_\mathrm{i}


Isoelektronische Störstellen

Neben Fremdatomen mit einer unterschiedlichen Zahl an Außenelektronen, können auch Fremdatome mit gleicher Anzahl von Außenelektronen wie das Atom, das sie ersetzen, in einen Halbleiter eingebracht werden. Diese Störstellen werden isoelektronische[3] (bzw. isovalente[4]) Störstellen genannt, beispielsweise Störstellen, die durch die Germanium-Dotierung eines Silicium-Kristalls entstehen. Besonders im Fall von vierwertigen Materialien kommt es dabei häufig zur Ausbildung zweier Störstellenniveaus, so erzeugt Germanium zwei Donatorniveaus im Silicium-Energieband, sie liegen bei +0,5 eV (gemessen von der Valenzbandekante) und −0,27 eV (gemessen von der Leitungsbandkante).[1] Da jedoch alle Valenzelektronen für die Bindung im Kristall benötigt werden, sind isoelektronische Störstellen neutral geladen.

Da sie Einfluss auf die optischen Eigenschaften von Halbleitern haben, werden isoelektronische Störstellen vor allem für optische Anwendungen eingesetzt. Ein bekanntes Beispiel sind Galliumphosphid-Kristalle (GaP) bei denen die Dotierung mit Stickstoff die Herstellung intensiv grün leuchtende Lumineszenzdioden herzustellen.[3][4]

Anwendung

In der Halbleitertechnik sind Fremdatome mit anderer Wertigkeit technisch interessante Störstellen, beispielsweise Bor oder Phosphor für Silicium-Kristalle. Das gezielte Einbringen von Fremdatomen wird als Dotierung bezeichnet. Übliche Konzentrationen bewegen sich dabei im Bereich von 1014 bis 1017 cm−3 (die Konzentration der Si-Atome selbst beträgt 5·1022 cm−3). Durch die relativ niedrigen Konzentrationen werden (auf den gesamten Kristall gesehen) die chemischen und kristallographischen Eigenschaften nur unwesentlich verändert. Elektrisch haben diese Störstellen (anderer Wertigkeit) jedoch große Bedeutung. Sie erzeugen sogenannte Haftstellen (engl. traps), ortsgebundenen Energieniveaus im Bereich der Energielücke (Bandlücke) von Halbleitern, also nicht von Elektronen besetzbaren Energiebereich zwischen dem Valenz- und Leitungsband. Auf diese Weise kann das Leitungsverhalten der Halbleiter gezielt beeinflusst werden. Durch die Störstellen sind auch bei tieferen Temperaturen mehr freie Ladungsträger vorhanden (als bei hochreinen Halbleitern), was zu einer höhere elektrische Leitfähigkeit führt. Den zugehörigen Mechanismus bezeichnet man als Störstellenleitung – im Gegensatz dazu steht die Eigenleitung von intrinsischen (reinen) Halbleitern bei höheren Temperaturen.

Literatur

  • Frank Thuselt: Physik der Halbleiterbauelemente: Einführendes Lehrbuch für Ingenieure und Physiker. Springer, Berlin 2004, ISBN 3-540-22316-9.
  • Werner Schatt, Hartmut Worch: Werkstoffwissenschaft. 9. Auflage. Wiley-VCH, 2003, ISBN 3-527-30535-1.

Einzelnachweise

  1. a b c S. M. Sze: Physics of Semiconductor Devices. 2. Auflage. Wiley & Sons, 1981, ISBN 0-471-09837-X, S. 21 (Neuere Auflagen enthalten keine Übersicht für Germanium).
  2. Werner Schatt, Hartmut Worch: Werkstoffwissenschaft. 9. Auflage. Wiley-VCH, 2003, ISBN 3-527-30535-1, S. 439.
  3. a b Frank Thuselt: Physik der Halbleiterbauelemente: Einführendes Lehrbuch für Ingenieure und Physiker. Springer, 2005, ISBN 9783540223160, S. 65.
  4. a b Rolf Sauer: Halbleiterphysik: Lehrbuch für Physiker und Ingenieure. Oldenbourg Wissenschaftsverlag, 2008, ISBN 9783486588637, S. 336.

Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Störstelle — Stör|stel|le 〈f. 19〉 Fehler im regelmäßigen Gitteraufbau eines Kristalls; Sy Fehlstelle, Fehlordnung * * * Stör|stel|le ↑ Kristallbaufehler. * * * Störstelle,   ein nulldimensionaler Gitterbaufehler in einem Kristall, insbesondere einem… …   Universal-Lexikon

  • Störstelle — priemaiša statusas T sritis Standartizacija ir metrologija apibrėžtis Nedidelis pašalinės medžiagos kiekis pagrindinėje medžiagoje. atitikmenys: angl. admixture; impurity vok. Beimischung, f; Fremdstörstelle, f; Störstelle, f rus. примесь, f… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Störstelle — priemaiša statusas T sritis fizika atitikmenys: angl. admixture; impurity vok. Beimischung, f; Fremdstörstelle, f; Störstelle, f rus. примесь, f pranc. impureté, f …   Fizikos terminų žodynas

  • Störstelle — Stör|stel|le …   Die deutsche Rechtschreibung

  • Isoelektronische Störstelle — Eine Isoelektronische Störstelle ist ein Gitterfehler in einem Kristall, bei dem ein Atom durch ein anderes ersetzt ist, das die gleiche Elektronenstruktur der Valenzschale hat. Ein Beispiel hierfür ist ein Stickstoffatom auf einem Phosphor… …   Deutsch Wikipedia

  • tiefe Störstelle — gilusis priemaišinis centras statusas T sritis radioelektronika atitikmenys: angl. deep impurity center vok. tiefe Störstelle, f; tiefes Verunreinigungszentrum, n rus. глубокий примесный центр, m pranc. centre d impureté profond, m; centre impur… …   Radioelektronikos terminų žodynas

  • kompensierte Störstelle — kompensuotoji priemaiša statusas T sritis radioelektronika atitikmenys: angl. compensated impurity vok. kompensierte Störstelle, f rus. скомпенсированная примесь, f pranc. impureté compensée, f …   Radioelektronikos terminų žodynas

  • flachliegende Störstelle — sekliųjų lygmenų priemaiša statusas T sritis radioelektronika atitikmenys: angl. shallow level impurity vok. flachliegende Störstelle, f rus. примесь, образующая мелкий уровень, f pranc. impureté créée le niveau peu profond, f …   Radioelektronikos terminų žodynas

  • zufällige Störstelle — atsitiktinė priemaiša statusas T sritis fizika atitikmenys: angl. unintentional impurity vok. zufällige Störstelle, f rus. случайная примесь, f pranc. impureté accidentelle, f …   Fizikos terminų žodynas

  • chemische Störstelle — cheminė priemaiša statusas T sritis fizika atitikmenys: angl. chemical impurity vok. chemische Störstelle, f; chemische Verunreinigung, f rus. химическая примесь, f pranc. impureté chimique, f …   Fizikos terminų žodynas

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”