Energielücke

Energielücke

Als Bandlücke (engl. band gap), auch Bandabstand bzw. verbotene Zone genannt, wird der energetische Abstand zwischen Valenzband und Leitungsband eines Festkörpers bezeichnet. Dessen elektrische und optische Eigenschaften werden wesentlich durch die Größe der Bandlücke bestimmt.

Energiebandlücken ausgewählter Materialien
Material Art Energie in eV
0 K 300 K
Elemente
C (als Diamant) indirekt 5,4 5,46–6,4
Si indirekt 1,17 1,12
Ge indirekt 0,75 0,67
Se direkt 1,74
IV-IV-Verbindungen
SiC 3C indirekt 2,36
SiC 4H indirekt 3,28
SiC 6H indirekt 3,03
III-V-Verbindungen
InP direkt 1,42 1,27
InAs direkt 0,43 0,355
InSb direkt 0,23 0,17
InN direkt 0,7
InxGa1-xN direkt 0,7–3,37
GaN direkt 3,37
GaP 3C indirekt 2,26
GaSb direkt 0,81 0,69
GaAs direkt 1,52 1,43
AlxGa1-xAs x<0,4 direkt,
x>0,4 indirekt
1,42–2,16
AlAs indirekt 2,16
AlSb indirekt 1,65 1,58
AlN 6,2
II-VI-Verbindungen
TiO2 3,03 3,2
ZnO direkt 3,436 3,37
ZnS 3,56
ZnSe direkt 2,70
CdS 2,42
CdSe 1,74
CdTe 1,45

Inhaltsverzeichnis

Ursprung

Nach dem Bändermodell sind gebundene elektronische Zustände nur auf bestimmten Intervallen der Energieskala zugelassen, den Bändern. Zwischen den Bändern können (aber müssen nicht) energetisch verbotene Bereiche liegen. Jeder dieser Bereiche stellt eine Lücke zwischen den Bändern dar, jedoch ist für die physikalischen Eigenschaften eines Festkörpers nur die eventuelle Lücke zwischen dem höchsten noch vollständig mit Elektronen besetzten Band (Valenzband, VBM) und dem nächsthöheren (Leitungsband, CBM) von entscheidender Bedeutung. Daher ist mit der Bandlücke immer diejenige zwischen Valenz- und Leitungsband gemeint.

Das Auftreten einer Bandlücke in manchen Materialien lässt sich quantenmechanisch durch das Verhalten der Elektronen in dem periodischen Potential einer Kristallstruktur verstehen. Dieses Modell der quasifreien Elektronen liefert die theoretische Grundlage für das Bändermodell.

Die Größe der Bandlücke wird üblicherweise in Elektronvolt (eV) angegeben. Falls das Valenzband mit dem Leitungsband überlappt, tritt keine Bandlücke auf. Ist das Valenzband nicht vollständig mit Elektronen besetzt, so übernimmt der obere nicht gefüllte Bereich die Funktion des Leitungsbandes, folglich hat man auch hier keine Bandlücke. In diesen Fällen reichen infinitesimale Energiebeträge zur Anregung eines Elektrons aus.

Auswirkungen

Elektrische Leitfähigkeit

Nur angeregte Elektronen im Leitungsband können sich praktisch frei durch einen Festkörper bewegen und tragen zur elektrischen Leitfähigkeit bei. Bei endlichen Temperaturen sind durch thermische Anregung immer einige Elektronen im Leitungsband, jedoch variiert deren Anzahl stark mit der Größe der Bandlücke. Anhand dieser wird deshalb die Klassifizierung nach Leitern, Halbleitern und Isolatoren vorgenommen. Die genauen Grenzen sind unscharf, man kann jedoch in etwa folgende Grenzwerte als Faustregel benutzen:

  • Leiter haben keine Bandlücke.
  • Halbleiter haben eine Bandlücke im Bereich von 0–3 eV.
  • Nichtleiter haben eine Bandlücke größer als 3 eV.

Optische Eigenschaften

Die Fähigkeit eines Festkörpers Licht zu absorbieren ist an die Bedingung geknüpft, die Photonenenergie mittels Anregen von Elektronen aufzunehmen. Da keine Elektronen in den verbotenen Bereich zwischen Valenz- und Leitungsband angeregt werden können, muss die Energie eines Photons die der Bandlücke übertreffen – ansonsten kann das Photon nicht absorbiert werden.

Die Energie eines Photons ist über die Formel E = hν an die Frequenz ν (Ny) der elektromagnetischen Strahlung gekoppelt. Besitzt ein Festkörper eine Bandlücke, so ist er demnach für Strahlung bis zu einer gewissen Frequenz transparent (Im Allgemeinen ist diese Aussage nicht ganz korrekt, da es auch andere Möglichkeiten gibt, die Photonenenergie zu absorbieren). Es lassen sich speziell für die Durchlässigkeit von sichtbarem Licht (Photonenenergien um ~2 eV) folgende Regeln ableiten:

  1. Metalle können nicht transparent sein
  2. Transparente Materialien sind Isolatoren

Da die Absorption eines Photons mit der Anregung eines Elektrons vom Valenz- ins Leitungsband verbunden ist, besteht ein Zusammenhang mit der elektrischen Leitfähigkeit. Insbesondere sinkt der elektrische Widerstand eines Halbleiters mit steigender Lichtintensität, was z. B. bei Helligkeitssensoren genutzt werden kann, siehe auch unter Fotoleitung.

Arten

Direkte Bandlücke

Schema eines direkten Bandübergangs im (vereinfachten) Bandstrukturdiagramm

Das Minimum des Leitungsbandes liegt im E(k)-Diagramm direkt über dem Maximum des Valenzbandes.

Bei einem direkten Übergang von Valenzband zu Leitungsband liegt der kleinste Abstand zwischen den Bändern direkt über dem Maximum des Valenzbandes.

Anwendungsbeispiele: Leuchtdiode

Indirekte Bandlücke

Schema eines indirekten Bandübergangs im (vereinfachten) Bandstrukturdiagramm

Das Minimum ist gegenüber dem Maximum auf der k-Achse verschoben. Bei einem indirekten Übergang von Valenzband zu Leitungsband liegt der kleinste Abstand zwischen den Bändern versetzt zum Maximum des Valenzbandes.

Die Absorption eines Photons ist nur bei einer direkten Bandlücke effektiv möglich, bei einer indirekten Bandlücke muss ein zusätzlicher Quasiimpuls (k) beteiligt werden, wobei ein passendes Phonon erzeugt oder vernichtet wird. Dieser Prozess mit einem Photon allein ist aufgrund des niedrigen Impulses des Lichts wesentlich unwahrscheinlicher, das Material zeigt dort eine schwächere Absorption.

Mit dem bekanntesten Halbleiter Silizium kann man keine Leuchtdioden bauen, weil dieses Material einen indirekten Bandübergang besitzt.

Siehe auch

Literatur

  • Charles Kittel, Einführung in die Festkörperphysik (dt. Übersetzung), Oldenbourg 2005, 14. Auflage, ISBN 3486577239
  • Charles Kittel, Introduction to Solid State Physics, John Wiley and Sons 1995, 7. Auflage, ISBN 0471111813

Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Energielücke — Ener|gie|lü|cke 〈f. 19〉 Lücke in der Energieversorgung * * * Energielücke,   Festkörperphysik: Bereich im quasikontinuierlichen Energiespektrum der Elektronen eines Festkörpers, der frei von Energieniveaus ist; speziell im Bändermodell die… …   Universal-Lexikon

  • Energielücke — draudžiamosios energijos tarpas statusas T sritis fizika atitikmenys: angl. energy gap; forbidden energy gap vok. Energielücke, f; verbotene Zone, f rus. запрещённая энергетическая зона, f; энергетическая щель, f pranc. écart énergétique interdit …   Fizikos terminų žodynas

  • Energielücke mit stetig variierender Breite — tolydžiai kintanti draudžiamosios energijos juosta statusas T sritis radioelektronika atitikmenys: angl. graded energy gap; graded forbidden energy band; graded band gap vok. Energielücke mit stetig variierender Breite, f; verbotenes Energieband… …   Radioelektronikos terminų žodynas

  • breite Energielücke — didelis draudžiamosios energijos tarpas statusas T sritis radioelektronika atitikmenys: angl. large forbidden energy gap; large energy gap vok. breite Energielücke, f; breiter verbotener Energiebandabstand, m rus. широкая запрещённая… …   Radioelektronikos terminų žodynas

  • schmale Energielücke — mažas draudžiamosios energijos tarpas statusas T sritis radioelektronika atitikmenys: angl. low forbidden energy gap; low energy gap vok. schmale Energielücke, f; schmaler verbotener Energiebandabstand, m rus. узкая запрещённая энергетическая… …   Radioelektronikos terminų žodynas

  • verbotene Energielücke — draudžiamosios energijos tarpas statusas T sritis Standartizacija ir metrologija apibrėžtis Laidumo juostos žemiausiojo lygmens ir valentinės juostos aukščiausiojo lygmens energijų skirtumas. atitikmenys: angl. energy gap; forbidden energy gap;… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Halbleiter mit großer Energielücke — plačiatarpis puslaidininkis statusas T sritis fizika atitikmenys: angl. high bandgap semiconductor; large energy gap semiconductor; wide bandgap semiconductor vok. Halbleiter mit breitem Bandabstand, m; Halbleiter mit großer Energielücke, m rus.… …   Fizikos terminų žodynas

  • Halbleiter mit kleiner Energielücke — siauratarpis puslaidininkis statusas T sritis fizika atitikmenys: angl. low gap semiconductor; narrow bandgap semiconductor; small bandgap semiconductor vok. Halbleiter mit kleinem Bandabstand, m; Halbleiter mit kleiner Energielücke, m;… …   Fizikos terminų žodynas

  • Physiknobelpreis 1973: Leo Esaki — Ivar Giaever — Brian Davon Josephson —   Esaki und Giaever wurden für ihre experimentellen Entdeckungen zum Tunnelphänomen in Halb und Supraleitern ausgezeichnet, Josephson für seine theoretische Vorhersage von Eigenschaften bei einer Supraströmung durch eine Tunnelbarriere.  … …   Universal-Lexikon

  • Diamant-Struktur — Kubische Kristallstruktur des Diamanten. Als Diamantstruktur (auch Diamantgitter oder Diamanttyp) bezeichnet man eine bestimmte Kristallstruktur, also ein bestimmtes Anordnungsmuster der Atome. Der Name rührt daher, dass das erste entdeckte… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”