- Tscherenkow-Strahlung
-
Als Tscherenkow-Strahlung (auch: Čerenkov-Licht, englisch Cherenkov radiation), benannt nach seinem Entdecker Pawel Alexejewitsch Tscherenkow (1904–1990), bezeichnet man im engeren Sinn eine bläuliche Leuchterscheinung, die beim Durchgang schneller Elektronen durch Wasser hervorgerufen wird und insbesondere in Abklingbecken von Kernkraftwerken zu beobachten ist. Die schnellen Elektronen sind hierbei durch radioaktiven Zerfall hervorgerufene Betastrahlung und durch Stoßprozesse von Neutronen und Gammaquanten an Atomen hervorgerufene Sekundärelektronen.
In Russland wird die Strahlung nach ihrem Mitentdecker Sergei Iwanowitsch Wawilow auch Wawilow-Tscherenkow-Strahlung genannt.
Inhaltsverzeichnis
Tscherenkow-Strahlung
Im weiteren Sinn wird darunter die Strahlung verstanden, die entsteht, wenn sich geladene Teilchen in Materie mit höherer Geschwindigkeit als der Phasengeschwindigkeit elektromagnetischer Wellen in diesem Medium bewegen, wobei dann allgemeiner vom Tscherenkow-Effekt gesprochen wird. So beträgt die Lichtgeschwindigkeit in Wasser 225.000.000 m/s im Vergleich zu 299.792.458 m/s im Vakuum.
Wenn sich ein geladenes Teilchen durch ein dielektrisches (nichtleitendes) Medium bewegt, werden die Atome längs der Flugbahn durch dessen Ladung kurzzeitig polarisiert. Durch die Polarisation (Ladungsverschiebung) der Atome senden diese elektromagnetische Wellen aus (beschleunigte/abgebremste Ladungen senden elektromagnetische Wellen aus). Im Normalfall interferieren die Wellen benachbarter Atome jedoch destruktiv (sie löschen sich aus), so dass keine Leuchterscheinung beobachtet wird. Bewegen sich die geladenen Teilchen jedoch schneller als das Licht in dem umgebenden Medium, so können die Wellen benachbarter Atome sich nicht mehr auslöschen, da sich immer eine gemeinsame kegelförmige Wellenfront ergibt. Diese elektromagnetischen Wellen kann man dann als Tscherenkow-Licht beobachten.
Die Richtung der ausgesandten Strahlung entlang der Flugbahn beschreibt einen sogenannten Mach-Kegel. Der Winkel θ zwischen Teilchenbahn und Strahlungsrichtung hängt von dem Verhältnis der Geschwindigkeit v = βc des Teilchens und der Lichtgeschwindigkeit c' = c / n im Medium mit Brechzahl n ab:
Das Tscherenkow-Licht ist somit das Analogon zum Überschallkegel, wenn Flugzeuge oder andere Körper sich schneller als der Schall fortbewegen.
Die minimale Energie, die zur Emission von Tscherenkow-Strahlung durch Elektronen in Wasser nötig ist, beträgt 263 keV.
2001 wurde jedoch beim Stuttgarter Max-Planck-Institut für Festkörperforschung und bei der University of Michigan experimentell entdeckt, dass kegelförmige Tscherenkow-Strahlung auch bei Unterlichtgeschwindigkeit auftreten kann.[1]
Anwendungen
Das Tscherenkow-Licht wird zum Nachweis von hochenergetischen geladenen Teilchen verwendet, insbesondere in der Teilchenphysik, Kernphysik und Astrophysik.
In Kernreaktoren ist die Intensität der Tscherenkow-Strahlung ein Maß für die Zahl von Kernspaltungen pro Sekunde, da hierbei energiereiche Elektronen aus den Brennstäben in das Wasser gelangen. Nach Entfernen der Brennstäbe aus dem Reaktorkern und Unterbringung in einem Abklingbecken ist die Intensität ein Maß der verbleibenden Radioaktivität.
In der Teilchenphysik dient die Tscherenkow-Strahlung einzelner geladener Elementarteilchen zu deren Nachweis und auch zur Messung ihrer Geschwindigkeit. Für verschiedene Geschwindigkeitsbereiche kommen dafür verschiedene Medien wie Glas, Wasser oder auch Luft in Frage.
Treffen sehr energiereiche kosmische Teilchen auf die Erdatmosphäre, werden je nach Art des Teilchens durch verschiedene Prozesse neue Elementarteilchen gebildet, welche Tscherenkow-Licht erzeugen können. Es entstehen dabei Lichtblitze (Tscherenkow-Blitze) von nur etwa einer Milliardstel Sekunde Dauer, aus denen man die Herkunftsrichtung der kosmischen Teilchen bestimmen kann. Dieser Effekt ist deshalb so bedeutungsvoll, weil z. B. Gammastrahlung von kosmischen Explosionen die Erdatmosphäre nicht durchdringen kann und deshalb von Teleskopen auf der Erde nicht direkt wahrgenommen werden kann. Erst der aus den Gammaquanten (hochenergetischen Photonen) entstehende elektromagnetische Schauer (bestehend aus Elektronen, Positronen und niederenergetischeren Photonen) kann von erdgebundenen Messgeräten (Tscherenkow-Teleskope) analysiert werden.
Im Super-Kamiokande- sowie im IceCube-Experiment werden Neutrinos detektiert, indem durch hochempfindliche Photomultiplier das Tscherenkow-Licht von Sekundärteilchen (Elektronen, Myonen) nachgewiesen wird, welche bei der äußerst seltenen Wechselwirkung der Neutrinos mit Wasser bzw. Eis entstehen.
Im Falle von Lichtausbreitung in Metamaterialien kann die Brechzahl negativ werden. Dies hat dann zur Folge (neben anderen Effekten wie einem umgekehrten Dopplereffekt), dass auftretende Tscherenkow-Strahlung in die entgegengesetzte Richtung der Teilchenbewegung ausgesandt wird, statt in dieselbe.[2]
Einzelnachweise
- ↑ DESY kworkquark.net und T. E. Stevens, J. K. Wahlstrand, J. Kuhl, R. Merlin: Cherenkov Radiation at Speeds Below the Light Threshold. Phonon-Assisted Phase Matching. In: Science. 26. Januar 2001
- ↑ D. R. Smith, J. B. Pendry und M. C. K. Wiltshire: Metamaterials and Negative Refractive Index. In: Science. Band 305, 6. August 2004
Literatur
- Dieter Meschede: Gerthsen Physik. 23. Auflage Auflage. Springer, Berlin, 2006, ISBN 3540254218.
- Gerhard Musiol, Johannes Ranft, Roland Reif: Kern- und Elementarteilchenphysik. Wiley-VCH, 1987, ISBN 3527268863, S. 1127.
Weblinks
Wikimedia Foundation.