Unterraumtopologie

Unterraumtopologie

Im mathematischen Teilgebiet der Topologie versteht man unter der Teilraumtopologie (auch induzierten Topologie, relative Topologie, Spurtopologie oder Unterraumtopologie) die natürliche Struktur, die eine Teilmenge eines topologischen Raumes "erbt". Die Teilraumtopologie ist eine spezielle Initialtopologie.

Formale Definition

Es sei X die Grundmenge eines topologischen Raums \left(X,\mathcal{O}\right) und Y\subseteq X eine Teilmenge. Dann ist die Teilraumtopologie auf Y die Topologie

{\mathcal{O}}_Y = \{O\cap Y\mid O\in \mathcal{O}\}.

Die offenen Teilmengen von Y sind also genau die Schnitte der offenen Teilmengen von X mit Y.

Eigenschaften

  • Die Teilraumtopologie auf einer Teilmenge Y\subseteq X eines topologischen Raumes X ist die schwächste Topologie, für die die Inklusionsabbildung
Y\to X,\quad y\mapsto y
stetig ist.
  • Ist Y eine offene Teilmenge eines topologischen Raumes X so ist eine Teilmenge U\subseteq Y genau dann offen in der Teilraumtopologie von Y, wenn U als Teilmenge von X offen ist.
  • Ist Y eine abgeschlossene Teilmenge eines topologischen Raumes X, so ist eine Teilmenge Z\subseteq Y genau dann abgeschlossen in der Teilraumtopologie von Y, wenn Z als Teilmenge von X abgeschlossen ist.
  • Eine stetige Abbildung topologischer Räume ist genau dann ein Monomorphismus im Sinne der Kategorientheorie, wenn sie als Abbildung auf das mit der Teilraumtopologie versehene mengentheoretische Bild ein Homöomorphismus ist. Insbesondere sind Monomorphismen injektiv.

Beispiele

  • Man stelle sich ein Blatt Papier ohne Rand als zweidimensionales Objekt vor. Im \R^3 ist dies keine offene Menge. Betrachtet man aber die Topologie bezüglich der Ebene, in der sich das Blatt befindet, so liegt eine offene Menge vor.
  • Die Teilraumtopologie auf \mathbb Z\subset\mathbb R ist die diskrete Topologie, d.h. alle Teilmengen von \mathbb Z sind offen als Teilmengen des topologischen Raumes \mathbb Z. Beispielsweise ist die Menge {0} eine offene Teilmenge von \mathbb Z, weil sie Schnitt der offenen Teilmenge \left(-\tfrac1 2, \tfrac1 2\right) von \mathbb R mit \mathbb Z ist.

Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Indiskrete Topologie — topologischer Raum berührt die Spezialgebiete Mathematik Topologie ist Spezialfall von Mengensystem umfasst als Spezialfälle …   Deutsch Wikipedia

  • Induzierte Topologie — Im mathematischen Teilgebiet der Topologie versteht man unter der Teilraumtopologie (auch induzierten Topologie, relative Topologie, Spurtopologie oder Unterraumtopologie) die natürliche Struktur, die eine Teilmenge eines topologischen Raumes… …   Deutsch Wikipedia

  • Relativ innerer Punkt — Der Begriff Relativ Innerer Punkt ist ein topologischer Begriff, der in der Mathematischen Optimierung gebraucht wird. Inhaltsverzeichnis 1 Definition 2 Beispiele 2.1 Quader 2.2 Kreisscheibe …   Deutsch Wikipedia

  • Relative Topologie — Im mathematischen Teilgebiet der Topologie versteht man unter der Teilraumtopologie (auch induzierten Topologie, relative Topologie, Spurtopologie oder Unterraumtopologie) die natürliche Struktur, die eine Teilmenge eines topologischen Raumes… …   Deutsch Wikipedia

  • Relativtopologie — Im mathematischen Teilgebiet der Topologie versteht man unter der Teilraumtopologie (auch induzierten Topologie, relative Topologie, Spurtopologie oder Unterraumtopologie) die natürliche Struktur, die eine Teilmenge eines topologischen Raumes… …   Deutsch Wikipedia

  • Simplex (Mathematik) — Ein 3 Simplex oder Tetraeder Das Simplex oder n Simplex (Plural: Simplexe, Simplizes oder Simplices[1]), ist ein Begriff aus der Geometrie und beschreibt ein n dimensionales Polytop. Dabei ist ein Sim …   Deutsch Wikipedia

  • Spurtopologie — Im mathematischen Teilgebiet der Topologie versteht man unter der Teilraumtopologie (auch induzierten Topologie, relative Topologie, Spurtopologie oder Unterraumtopologie) die natürliche Struktur, die eine Teilmenge eines topologischen Raumes… …   Deutsch Wikipedia

  • Teilraum — Als Raum bezeichnet man in der Mathematik eine Menge F versehen mit einer mathematischen Struktur. Unter einem Unterraum versteht man eine Teilmenge , welche bezüglich der Struktur im weitesten Sinne abgeschlossen ist. Die genaue Definition hängt …   Deutsch Wikipedia

  • Teilraumtopologie — Im mathematischen Teilgebiet der Topologie versteht man unter der Teilraumtopologie (auch induzierten Topologie, relativen Topologie, Spurtopologie oder Unterraumtopologie) die natürliche Struktur, die eine Teilmenge eines topologischen Raumes… …   Deutsch Wikipedia

  • Topologischer Raum — Ein Topologischer Raum ist der grundlegende Gegenstand der Teildisziplin Topologie der Mathematik. Durch die Einführung einer topologischen Struktur auf einer Menge lassen sich intuitive Lagebeziehungen wie „Nähe“ und „Streben gegen“ aus dem… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”