Initialtopologie

Initialtopologie

Als Initialtopologie bezüglich einer Abbildungsfamilie bezeichnet man in der Topologie die gröbste Topologie auf einer Menge X, die diese Familie von Abbildungen aus X in andere topologische Räume stetig macht. Die Initialtopologie entsteht also durch „Rückwärtsübertragung“ der auf den Bildräumen vorhandenen topologischen Strukturen auf die Menge X. Dies ist die Anwendung eines allgemeineren Konzepts aus der Kategorientheorie auf topologische Räume, mit der wichtige „natürliche Räume“ wie Produkt- und Unterräume in einen gemeinsamen Rahmen gestellt werden können.

Inhaltsverzeichnis

Definition

Gegeben ist eine Menge X, eine Familie von topologischen Räumen (Yi, Ti) und eine Familie von Abbildungen fi :X → Yi von X in die Räume Yi. Eine Topologie S auf X heißt Initialtopologie bezüglich der Familie (Yi, Ti, fi), wenn sie eine der drei folgenden, gleichwertigen Eigenschaften hat:

Universelle Eigenschaft der Initialtopologie
  1. S ist die gröbste Topologie auf X, bezüglich derer alle Abbildungen fi stetig sind.
  2. Die Urbilder aller offenen Mengen f_i^{-1}(O),\;(O\in T_i) unter allen Abbildungen der Familie bilden eine Subbasis der Topologie S.
  3. Eine Funktion g aus einem topologischen Raum Z in X ist genau dann stetig, wenn f_i \circ g stetig ist für jedes iI.

Das Diagramm auf der rechten Seite veranschaulicht die universelle Eigenschaft der Initialtopologie.

Bemerkungen

Die drei Formulierungen der Definition beleuchten unterschiedliche Aspekte der Initialtopologie:

  1. Hier wird sie als kleinste obere Schranke gewisser Topologien im Verband aller Topologien auf X angesehen. Jede einzelne Abbildung fi zieht eine topologische Struktur Si aus ihrem Bildraum auf X zurück und die Initialtopologie S ist die gröbste Topologie, die in allen diesen Topologien enthalten ist, also die Schnittmenge dieser Topologien. Mit dieser Definition lässt sich die Existenz der Initialtopologie beweisen.
  2. Diese Definition ist konstruktiv. Mit ihr kann man beliebige offene Mengen der Initialtopologie erzeugen, siehe Basis (Topologie). Da eine Topologie durch eine Subbasis eindeutig bestimmt wird, folgt aus dieser Definition leicht die Eindeutigkeit der Initialtopologie.
  3. Die abstrakte Charakterisierung durch eine universelle Eigenschaft rechtfertigt die Bezeichnung „Initial“-Topologie und gestattet es, diese Strukturen im allgemeineren Rahmen der Kategorientheorie zu betrachten. Die Finaltopologie kann durch die hierzu duale Eigenschaft charakterisiert werden.

Beispiele

Einige häufig verwendete Konstruktionen topologischer Räume können als Inititialtopologien aufgefasst werden:

  • Die Teilraumtopologie ist die Inititialtopologie auf der Teilmenge bezüglich der natürlichen Inklusionsabbildung.
  • Die Produkttopologie ist die Initialtopologie bezüglich der natürlichen Projektionen auf die Faktorräume.
  • Die schwache Topologie auf einem normierten Vektorraum E ist die Initialtopologie bezüglich der stetigen Linearformen auf E (also des topologischen Dualraums E' von E).
  • Ist auf einer Menge X eine Familie von Topologien Ti gegeben, dann ist die Initialtopologie bezüglich der Identität (die gröbste Topologie, die die identische Abbildung von X auf (X,Ti) in allen Topologien stetig macht) gerade die kleinste obere Schranke der Familie {Ti} im Verband der Topologien auf X.

Literatur

  • Boto von Querenburg: Mengentheoretische Topologie. 3. neu bearbeitete und erweiterte Auflage. Springer-Verlag, Berlin u. a. 2001, ISBN 3-540-67790-9 (Springer-Lehrbuch).
  • Eraldo Giuli (Hrsg.): Categorical Topology. Kluwer, Dordrecht u. a. 1996, ISBN 0-7923-4049-3 (Applied Categorical Structures 4, 1).
  • Harro Heuser: Funktionalanalysis. Theorie und Anwendung. 3. durchgesehene Auflage. Teubner-Verlag, Stuttgart 1992, ISBN 3-519-22206-X (Mathematische Leitfäden).

Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Beschränkter Operator — Der Begriff Linearer Operator wurde in der Funktionalanalysis (einem Teilgebiet der Mathematik) eingeführt und ist synonym zum Begriff der linearen Abbildung. Eine lineare Abbildung ist eine strukturerhaltende Abbildung zwischen Vektorräumen über …   Deutsch Wikipedia

  • Schwache Operatortopologie — Der Begriff Linearer Operator wurde in der Funktionalanalysis (einem Teilgebiet der Mathematik) eingeführt und ist synonym zum Begriff der linearen Abbildung. Eine lineare Abbildung ist eine strukturerhaltende Abbildung zwischen Vektorräumen über …   Deutsch Wikipedia

  • Starke Operatortopologie — Der Begriff Linearer Operator wurde in der Funktionalanalysis (einem Teilgebiet der Mathematik) eingeführt und ist synonym zum Begriff der linearen Abbildung. Eine lineare Abbildung ist eine strukturerhaltende Abbildung zwischen Vektorräumen über …   Deutsch Wikipedia

  • Stetige lineare Abbildung — Der Begriff Linearer Operator wurde in der Funktionalanalysis (einem Teilgebiet der Mathematik) eingeführt und ist synonym zum Begriff der linearen Abbildung. Eine lineare Abbildung ist eine strukturerhaltende Abbildung zwischen Vektorräumen über …   Deutsch Wikipedia

  • Unbeschränkter Operator — Der Begriff Linearer Operator wurde in der Funktionalanalysis (einem Teilgebiet der Mathematik) eingeführt und ist synonym zum Begriff der linearen Abbildung. Eine lineare Abbildung ist eine strukturerhaltende Abbildung zwischen Vektorräumen über …   Deutsch Wikipedia

  • Satz von Goldstine — Die schwach * Topologie ist eine wichtige Topologie auf dem Dualraum eines normierten (oder allgemeiner lokalkonvexen) Raums. Die Bedeutung beruht u.a. auf dem Satz von Banach Alaoglu, wonach die Einheitskugel im Dualraum bezüglich dieser… …   Deutsch Wikipedia

  • Subbasis — Eine Subbasis in einem topologischen Raum ist ein (möglichst klein gewähltes) System von offenen Mengen, das die Topologie eindeutig beschreibt. Ist dieses System (im unten definierten Sinne) auch noch abgeschlossen bezüglich der… …   Deutsch Wikipedia

  • Tichonow-Raum — Im mathematischen Teilgebiet der Topologie versteht man unter einem vollständig regulären Raum einen topologischen Raum mit speziellen Trennungseigenschaften. Dabei handelt es sich um topologische Räume, die im unten präzisierten Sinne… …   Deutsch Wikipedia

  • Tychonoff-Raum — Im mathematischen Teilgebiet der Topologie versteht man unter einem vollständig regulären Raum einen topologischen Raum mit speziellen Trennungseigenschaften. Dabei handelt es sich um topologische Räume, die im unten präzisierten Sinne… …   Deutsch Wikipedia

  • Umgebungsbasis — Eine Subbasis in einem topologischen Raum ist ein (möglichst klein gewähltes) System von offenen Mengen, das die Topologie eindeutig beschreibt. Ist dieses System (im unten definierten Sinne) auch noch abgeschlossen bezüglich der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”