Zahlengerade

Zahlengerade

Unter Zahlengerade versteht man in der Mathematik die Veranschaulichung der reellen Zahlen als Punkte auf einer Geraden.

Zahlengerade mit hervorgehobenen ganzen Zahlen

Im Bild wurden die Orte der Punkte der ganzen Zahlen durch senkrechte Striche hervorgehoben.

Die Zahlengerade ist eine Veranschaulichung des eindimensionalen euklidischen Vektorraums  \mathbb{R}^{1}. Die Darstellung verdeutlicht, dass die Menge der reellen Zahlen eine geordnete Menge ist. Die Zahlengerade setzt sich in beide Richtungen bis ins Unendliche fort. Der Pfeil an der rechten Seite der Darstellung gibt an, dass die Zahlen in dieser Richtung größer werden.

Im Schulunterricht wird zur Veranschaulichung der natürlichen Zahlen ein Zahlenstrahl verwendet.

Zahlenstrahl

Die nachfolgende Abbildung zeigt die Lage einiger besonderer reeller Zahlen: die Quadratwurzel von 2, die eulersche Zahl e und die Kreiszahl π.

Zahlengerade mit einigen besonderen Zahlen

Die Menge der komplexen Zahlen lässt sich durch die Punkte einer Ebene darstellen, die sogenannte gaußsche Zahlenebene.

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Zahlengerade — Zah|len|ge|ra|de, die (Math.): Gerade, deren Punkte zur Darstellung der reellen Zahlen dienen …   Universal-Lexikon

  • Erweiterte reelle Zahlen — Zahlengerade Die Menge der reellen Zahlen ist heute der für Anwendungen der Mathematik wichtigste Zahlbereich: Eine Vielzahl von (berechneten) physikalischen Größen wie zum Beispiel Länge, Temperatur und Masse können mit reellen Zahlen als… …   Deutsch Wikipedia

  • R+ — Zahlengerade Die Menge der reellen Zahlen ist heute der für Anwendungen der Mathematik wichtigste Zahlbereich: Eine Vielzahl von (berechneten) physikalischen Größen wie zum Beispiel Länge, Temperatur und Masse können mit reellen Zahlen als… …   Deutsch Wikipedia

  • R- — Zahlengerade Die Menge der reellen Zahlen ist heute der für Anwendungen der Mathematik wichtigste Zahlbereich: Eine Vielzahl von (berechneten) physikalischen Größen wie zum Beispiel Länge, Temperatur und Masse können mit reellen Zahlen als… …   Deutsch Wikipedia

  • Reell — Zahlengerade Die Menge der reellen Zahlen ist heute der für Anwendungen der Mathematik wichtigste Zahlbereich: Eine Vielzahl von (berechneten) physikalischen Größen wie zum Beispiel Länge, Temperatur und Masse können mit reellen Zahlen als… …   Deutsch Wikipedia

  • Reelle Zahlen — Zahlengerade Die Menge der reellen Zahlen ist heute der für Anwendungen der Mathematik wichtigste Zahlbereich: Eine Vielzahl von (berechneten) physikalischen Größen wie zum Beispiel Länge, Temperatur und Masse können mit reellen Zahlen als… …   Deutsch Wikipedia

  • Reellwertig — Zahlengerade Die Menge der reellen Zahlen ist heute der für Anwendungen der Mathematik wichtigste Zahlbereich: Eine Vielzahl von (berechneten) physikalischen Größen wie zum Beispiel Länge, Temperatur und Masse können mit reellen Zahlen als… …   Deutsch Wikipedia

  • Vollständigkeitsaxiom — Zahlengerade Die Menge der reellen Zahlen ist heute der für Anwendungen der Mathematik wichtigste Zahlbereich: Eine Vielzahl von (berechneten) physikalischen Größen wie zum Beispiel Länge, Temperatur und Masse können mit reellen Zahlen als… …   Deutsch Wikipedia

  • — Zahlengerade Die Menge der reellen Zahlen ist heute der für Anwendungen der Mathematik wichtigste Zahlbereich: Eine Vielzahl von (berechneten) physikalischen Größen wie zum Beispiel Länge, Temperatur und Masse können mit reellen Zahlen als… …   Deutsch Wikipedia

  • Reelle Zahl — ℝ Zahlengerade Die Menge der reellen Zahlen ist heute der für Anwendungen der Mathematik wichtigste Zahlenbereich: Eine Vielzahl von (berechneten) physikalischen Größen wie zum Beispiel …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”