Zahlenfunktion

Zahlenfunktion

Eine Zahlenfunktion ist eine Funktion, die Tupel von natürlichen Zahlen auf natürliche Zahlen abbildet.

Der Begriff wird hauptsächlich in der theoretischen Informatik in der Berechenbarkeitstheorie verwendet und dient der Abgrenzung zu Funktionen über anderen Mengen, insbesondere Wortfunktionen. Zum Beweis der Berechenbarkeit einer Zahlenfunktion dienen mathematische Modelle wie die Registermaschine, die While-Berechenbarkeit oder die μ-Rekursion.

Formale Definition

Eine Zahlenfunktion ist eine möglicherweise partielle Funktion f:\mathbb{N}^k \to_p \mathbb{N}.

Dabei steht \mathbb{N}^k für das k-fache kartesische Produkt \prod_{i=1}^k \mathbb{N} , also die Menge der Tupel der Länge k mit natürlichen Zahlen als Komponenten.

Bedeutung

In der Theorie der Berechenbarkeit kann man zeigen, dass sich Funktionen über beliebige Mengen durch eine geeignete Nummerierung auf Zahlenfunktionen abbilden lassen. Über die Cantorsche Paarungsfunktion zeigt man weiter, dass es ausreicht, sich in der Theorie der Berechenbarkeit auf die Menge der einstelligen Zahlenfunktionen \mathbb N \to_p \mathbb N zu beschränken.


Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • S-Zahlenfunktion — Eine s Zahlenfunktion ist eine in der Funktionalanalysis gebräuchliche Abbildung s, die für Banachräume E und F jedem Operator eine Folge (sn(T)) mit folgenden Eigenschaften zuordnet: Monotonie: Additivität: für …   Deutsch Wikipedia

  • Abzählbar — In der Mengenlehre wird eine Menge A als abzählbar unendlich bezeichnet, wenn sie die gleiche Mächtigkeit hat wie die Menge der natürlichen Zahlen . Dies bedeutet, dass es eine Bijektion zwischen A und der Menge der natürlichen Zahlen gibt, die… …   Deutsch Wikipedia

  • Abzählbar unendlich — In der Mengenlehre wird eine Menge A als abzählbar unendlich bezeichnet, wenn sie die gleiche Mächtigkeit hat wie die Menge der natürlichen Zahlen . Dies bedeutet, dass es eine Bijektion zwischen A und der Menge der natürlichen Zahlen gibt, die… …   Deutsch Wikipedia

  • Abzählbare Menge — In der Mengenlehre wird eine Menge A als abzählbar unendlich bezeichnet, wenn sie die gleiche Mächtigkeit hat wie die Menge der natürlichen Zahlen . Dies bedeutet, dass es eine Bijektion zwischen A und der Menge der natürlichen Zahlen gibt, die… …   Deutsch Wikipedia

  • Cantor'sche Paarungsfunktion — Die Cantorsche Paarungsfunktion (manchmal auch Nummerierungsfunktion) ist eine in der theoretischen Informatik verwendete Abbildung, die auf dem Diagonalargument von Cantor basiert. Ihre Verallgemeinerung von Paaren auf Tupel wird als Cantorsche… …   Deutsch Wikipedia

  • Cantorsche Tupelfunktion — Die Cantorsche Paarungsfunktion (manchmal auch Nummerierungsfunktion) ist eine in der theoretischen Informatik verwendete Abbildung, die auf dem Diagonalargument von Cantor basiert. Ihre Verallgemeinerung von Paaren auf Tupel wird als Cantorsche… …   Deutsch Wikipedia

  • Die cantorsche Paarungsfunktion — (manchmal auch Nummerierungsfunktion) ist eine in der theoretischen Informatik verwendete Abbildung, die auf dem Diagonalargument von Cantor basiert. Ihre Verallgemeinerung von Paaren auf Tupel wird als Cantorsche Tupelfunktion bezeichnet. Mit… …   Deutsch Wikipedia

  • Nummerierungsfunktion — Die Cantorsche Paarungsfunktion (manchmal auch Nummerierungsfunktion) ist eine in der theoretischen Informatik verwendete Abbildung, die auf dem Diagonalargument von Cantor basiert. Ihre Verallgemeinerung von Paaren auf Tupel wird als Cantorsche… …   Deutsch Wikipedia

  • Standard-Tupelfunktion — Die Cantorsche Paarungsfunktion (manchmal auch Nummerierungsfunktion) ist eine in der theoretischen Informatik verwendete Abbildung, die auf dem Diagonalargument von Cantor basiert. Ihre Verallgemeinerung von Paaren auf Tupel wird als Cantorsche… …   Deutsch Wikipedia

  • Überabzählbar unendlich — In der Mengenlehre wird eine Menge A als abzählbar unendlich bezeichnet, wenn sie die gleiche Mächtigkeit hat wie die Menge der natürlichen Zahlen . Dies bedeutet, dass es eine Bijektion zwischen A und der Menge der natürlichen Zahlen gibt, die… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”