Birkeland-Ströme

Birkeland-Ströme
Die Magnetosphäre schirmt die Erdoberfläche von den geladenen Partikeln des Sonnenwindes ab.

Als Magnetosphäre bezeichnet man das Raumgebiet um ein astronomisches Objekt, in dem das Magnetfeld des Objekts dominiert, ihre scharfe äußere Begrenzung wird Magnetopause genannt. Die innere Begrenzung zur neutralen Atmosphäre bildet die Ionosphäre. Neben der Magnetosphäre der Erde wurden auch die Magnetosphären des Jupiter und des Saturn durch die Raumsonden Ulysses (1992), Galileo (1995 bis 2003) und Cassini (seit 2004) näher untersucht. Im folgenden wird exemplarisch die Magnetosphäre der Erde beschrieben.

Inhaltsverzeichnis

Struktur

Simulation des Erdmagnetfeldes in Wechselwirkung mit dem IMF. Die Sonne steht links. Rekonnexionen im Schweifbereich (rechts) sind lediglich als Vorstufe angedeutet.

Eine planetare Magnetosphäre wird vor allem durch das vom Sonnenwind getragene Magnetfeld geformt. Der Sonnenwind erreicht in Erdnähe eine Geschwindigkeit von 300 bis 800 km/s und weist eine Dichte von 3 bis 10 Teilchen pro Kubikzentimeter auf. Das interplanetare Magnetfeld (IMF) von etwa 4 nTesla enthält ein nahezu stoßfreies Plasma niedriger Dichte. Der Sonnenwind staucht die Magnetosphäre auf der Sonnenseite auf etwa 10 Erdradien (etwa 60.000 km) zusammen und zieht sie auf der Nachtseite zu einem Magnetschweif auseinander, der bis in eine Entfernung von etwa 100 Erdradien (600.000 km) reichen kann. Die Form der Magnetopause ist jedoch nicht statisch, sondern ändert sich zeitlich sehr stark – während der Schweif durch die wechselnde Magnetfeldrichtung des Sonnenwinds regelrecht im Sonnenwind „flattert“, ist die Ausdehnung auf der Tagseite vom Impuls des Sonnenwinds abhängig. In der Simulation (rechtes Bild) treffen die Magnetfeldlinien von links auf das Erdmagnetfeld. In der dargestellten Polarität kommt es zu Rekonnexionen, die die Erdmagnetfeldlinien von links in den Schweifbereich nach rechts abwandern lassen.

Messungen der Cluster-Satelliten zeigen weiterhin Gasblasen mit Temperaturen von bis zu zehn Millionen Grad die sich ständig von der Magnetosphäre lösen. Bei einem stärkeren magnetischen Sturm am 10. Januar 1997 wurde die Magnetosphäre auf 5 Erdradien (etwa 30.000 km) zusammengestaucht, Satelliten in geostationärer Umlaufbahn befanden sich deshalb bei starken magnetischen Stürmen zeitweise außerhalb der Magnetosphäre und sind in diesem Zeitraum dem Sonnenwind direkt ausgesetzt.

Der Sonnenwind umströmt die Erde mit Überschallgeschwindigkeit und wird an der Bugstoßwelle auf Unterschallgeschwindigkeit abgebremst, den Bereich zwischen der Bugstoßwelle und der Magnetopause nennt man auch Magnetosheath. Die Schallgeschwindigkeit stellt bei dieser Betrachtung ebenfalls wie in Luft diejenige Geschwindigkeit dar, mit der sich beispielsweise Druckstörungen fortbewegen, auch wenn Schall im akustischen Sinne nicht im Weltall existiert. Ein Teil des Sonnenwinds wird an der Bugstoßwelle auch reflektiert, so dass sich ein Vorschock ausbildet.

Die Magnetfeldlinien sind auf der Tagseite geschlossen und in den äußeren Bereichen des Magnetschweifes (den nördlichen und südlichen Tail Lobes) offen, den Übergangsbereich an den magnetischen Polen nennt man Cusp oder Cleft - in diesen Bereichen können Teilchen des Sonnenwinds direkt in die inneren Schichten der Atmosphäre eindringen. Zwischen den Lobes befindet sich in Erdnähe die Plasmaschicht mit geschlossenen Feldlinien und die Neutralschicht in größeren Entfernungen.

Ströme

Die Wechselwirkung des Magnetfelds des vorbeistömenden Sonnenwinds und des irdischen Magnetfelds führt zu einem Dynamoeffekt, wobei die Erde den Stator und der Sonnenwind den Rotor bildet. Diese Wechselwirkung führt zu einer Energieübertragung an die Magnetosphäre und zu einem komplexen System elektrischer Ströme.

Die äußeren Schichten der Atmosphäre enthalten stark verdünntes Plasma, dessen geladene Teilchen sich entlang der Magnetfeldlinien auf Spiralbahnen bewegt. Durch diese Bewegung wird in der Neutralschicht ein Neutralschichtstrom induziert. In der Plasmaschicht wird zusammen mit dem Erdmagnetfeld der Ringstrom gebildet.

Birkeland-Ströme

Den Hauptanteil der induzierten Ströme bilden die Birkeland-Ströme (nach Kristian Birkeland, 1867 - 1917), die aus Elektronen bestehen, die sich aufgrund der Lorentzkraft in Spiralen um die von Nord- nach Südpol verlaufenden Magnetfeldlinien bewegen. Diese Teilchen bewegen sich praktisch stoßfrei in den Strahlungsgürteln (den so genannten Van-Allen-Gürteln) der äußeren Atmosphäre und werden aufgrund der Erhaltung des magnetischen Moments bei Annäherung an die magnetischen Pole reflektiert und bewegen sich wieder auf den anderen Pol zu.

Bei erhöhter Sonnenaktivität befinden sich mehr und energiereichere freie Elektronen in den oberen Atmosphärenschichten, so dass die an die Atome der Atmosphäre in etwa 100-150 km Höhe stoßen, und diese anregen. Das führt zu Leuchterscheinungen, den Polarlichtern.

Pedersenströme

Die Birkeland-Ströme werden in etwa 100 bis 150 km Höhe durch die Pedersenströme geschlossen. Die Stromdichten liegen bei einigen Ampere pro Quadratmeter, was zu einen Gesamtstrom von einigen 10.000 Ampere führt.

Ringstrom

Sonnenerzeugte elektrische Ströme auf der Tagseite der Ionosphäre

Der irdische Ringstrom ist ein elektrischer Strom, der die Erde entlang des Van-Allen-Gürtels in der Äquatorebene in Ost-West-Richtung umfließt. Er wird getragen von Ionen mit etwa 15 bis 200 keV, die bei der Ionisation von Luftteilchen durch die kosmische Strahlung entstehen. Diese Teilchen bewegen sich jedoch nicht nur in Spiralbahnen um die Feldlinien, sondern führen auch eine Driftbewegungen aus. Die Elektronen bewegen sich dabei von West nach Ost, die Protonen von Ost nach West. Das führt zu einem effektiven Strom in Ost-West-Richtung. Die Ausdehnung dieses Ringstromes reicht von etwa 2 bis zu etwa 9 Erdradien. Obwohl die typischen Stromdichten nur wenige Zehntel Ampere pro Quadratmeter betragen, resultieren aufgrund des enormen Volumens Ströme von mehreren Millionen Ampere.

Der Ringstrom wird in ruhigen Phasen vorwiegend aus der Plasmaschicht gespeist, die Energiedichte wird dabei zu mehr als 90 % von Wasserstoffionen getragen. Während magnetischer Stürme gewinnen jedoch Sauerstoffionen aus den oberen Schichten der Atmosphäre an Bedeutung und können bei starken Stürmen den Hauptteil des Stroms tragen.

Polarer Elektrojet

Die Pedersenströme führen zu einem Hallstrom in Ost-West-Richtung, der als polarer Elektrojet bezeichnet wird. Der Elektrojet kann bei magnetischen Stürmen Stromstärken von mehr als eine Million Ampere erreichen und kann sich auf Zeitskalen von Minuten sehr stark ändern. Zusammen mit den Pedersenströmen führt dies zu einem stark fluktuierenden Feld auf der Erdoberfläche, das vor allem in langen Leitern wie Hochspannungsleitungen und Pipelines starke Ströme induziert, die zur Beschädigung oder Zerstörung elektrischer Bauteile beziehungsweise zu verstärkter Korrosion führen können.

Da die Atmosphäre in etwa 100 km Höhe kein sehr guter Leiter ist, führen die Pedersenströme und die Elektrojets auch zu einer starken Aufheizung der Atmosphäre, die zu einer starken Ausdehnung führt - einige Stürme führten im Bereich von Satelliten auf niedrigen Umlaufbahnen (bis etwa 800 km) zu einer Verdopplung der Luftdichte und einer entsprechend höheren Abbremsung durch den höheren Luftwiderstand, ebenso führt diese Ausdehnung zum verstärkten Eintrag von Sauerstoffionen in den Ringstrom.

Plasmoide

Der Sonnenwind und die Ströme in den Tail Lobes führen zu starken Verzerrungen der Feldlinien in der Plasmaschicht des Magnetschweifs. Wenn diese Verzerrungen zu stark werden (die Vorgänge sind im Detail noch nicht verstanden), kann es zu Abschnürungen durch magnetische Rekonnexionen kommen - die erdnäheren Teile der Feldlinien schließen sich zu dipolähnlicheren Feldlinien, während die erdferneren Teile ein Plasmoid bilden, ein plasmagefülltes Raumgebiet mit in sich geschlossenen Feldlinien. Durch die freiwerdende magnetische Energie wird zum einen das Plasmoid nach außen beschleunigt, zum anderen führt es zu einer Aufheizung höherer Atmosphärenschichten und damit zu einer verstärkenden Rückkopplung mit dem elektrischen Strömungssystem.

Der Vorgang der Plasmoid-Ablösung wird als magnetischer Teilsturm (substorm) bezeichnet, da man sie anfangs nur als Teilkomponente magnetischer Stürme betrachtete. Heute weiß man allerdings, dass der Teilsturm ein Phänomen ist, das nicht nur in „Sturmphasen“, sondern auch in ruhigen Phasen auftritt – der Verlauf ist in beiden Fällen sehr ähnlich: ein Teilsturm dauert etwa 45 Minuten und führt zu einer Plasma-Aufheizung von etwa 2 keV. Während einer Sturmphase ist jedoch das Plasma bereits zu Beginn heißer (etwa 3-4 keV in Ruhephasen und etwa 8 keV in Sturmphasen) und der Anstieg verläuft steiler.

Sonstiges

Änderungen im Sonnenwind können magnetosphärische Vorgänge auslösen, die die Kommunikation über Radio beeinflussen, Schaden an Satelliten verursachen und elektrische Leitungen unterbrechen können.

Bei der Erde ist die Stoßfront im Durchschnitt etwa 10 Erdradien entfernt. Die größte Magnetosphäre im Sonnensystem besitzt allerdings der Jupiter. Hier beträgt der Abstand Planet-Stoßfront zeitweise bis zu 100 Jupiterradien.

Quellen

Literatur

  • Martin F. Heyn: Solar wind-magnetosphere interactions. Verl. d. Österr. Akad. d. Wiss., Wien 1992, ISBN 3-7001-1961-5
  • Thomas E. Cravens: Planetary ionospheres and magnetospheres. Pergamon Press, Oxford 1997, ISBN 0-08-043297-2
  • Lev Dorman: Cosmic rays in magnetospheres of the earth and other planets. Springer, Dordrecht 2009, ISBN 978-1-402-09238-1


Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Magnetopause — Die Magnetosphäre schirmt die Erdoberfläche von den geladenen Partikeln des Sonnenwindes ab. Als Magnetosphäre bezeichnet man das Raumgebiet um ein astronomisches Objekt, in dem das Magnetfeld des Objekts dominiert, ihre scharfe äußere Begrenzung …   Deutsch Wikipedia

  • Magnetosphäre — Die Magnetosphäre schirmt die Erdoberfläche gegen die geladenen Partikel des Sonnenwindes ab. Als Magnetosphäre bezeichnet man das Raumgebiet um ein astronomisches Objekt, in dem das Magnetfeld des Objekts dominiert, ihre scharfe äußere… …   Deutsch Wikipedia

  • Heliospheric current sheet — The Parker Spiral Die Sonne hat ein Magnetfeld, das nur entfernt als Dipolfeld angesehen werden kann. An den Polregionen befinden sich die scharf begrenzten koronalen Löcher. In der Äquatorregion befinden sich aktivere Gebiete, die sich durch… …   Deutsch Wikipedia

  • Heliosphärische Stromschicht — Die Parkerspirale Die Sonne hat ein Magnetfeld, das nur entfernt als Dipolfeld angesehen werden kann. Nur an den Polregionen befinden sich zu Zeiten des Sonnenfleckenminimums die scharf begrenzten koronalen Löcher, die bei Sonnenfleckenmaxima an… …   Deutsch Wikipedia

  • Sonnenstaub — Ein Experiment zur Erforschung des Sonnenwinds. Das Sonnenwindsegel wird von Aldrin während der Apollo 11 Mission ausgerichtet. Der Sonnenwind, der Sternwind der Sonne, ist ein Strom geladener Teilchen, der von der Sonne ins All strömt.… …   Deutsch Wikipedia

  • Sonnenwindpartikel — Ein Experiment zur Erforschung des Sonnenwinds. Das Sonnenwindsegel wird von Aldrin während der Apollo 11 Mission ausgerichtet. Der Sonnenwind, der Sternwind der Sonne, ist ein Strom geladener Teilchen, der von der Sonne ins All strömt.… …   Deutsch Wikipedia

  • Polarlicht — (hierzu Tafel »Polarlichter I u. II«), eine Lichterscheinung des Himmels, die sich in ihrer vollsten Pracht in den Polarländern (Nordlicht [Aurora borealis] und Südlicht [Aurora australis, Australlicht]) zeigt, aber auch zuweilen in unsern… …   Meyers Großes Konversations-Lexikon

  • Sonnenwind — Ein Experiment zur Erforschung des Sonnenwinds. Das Sonnenwindsegel wird von Aldrin während der Apollo 11 Mission ausgerichtet. Der Sonnenwind, der Sternwind der Sonne, ist ein Strom geladener Teilchen, der von der Sonne ins All strömt.… …   Deutsch Wikipedia

  • Kathodenstrahlen — entstehen beim Durchgang einer elektrischen Entladung durch sehr verdünnte Gase und bei Bestrahlung von Metallen mit ultraviolettem Licht. Sie gehen ferner aus von weißglühenden Metallen, stark erhitzten Elektrolyten und von radioaktiven Stoffen …   Meyers Großes Konversations-Lexikon

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”